Engineering Committee Report Republican River Compact Administration August 25, 2021

EXECUTIVE SUMMARY

The Engineering Committee (EC) met six times since the August 21, 2020, Republican River Compact Administration (RRCA) Annual Meeting. Over the past year, the EC completed these assignments: 1) hold quarterly meetings; 2) exchange information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, including all required data and documentation; 3) finalize 2020 accounting; 4) continue to work on developing a recommendation for the Flood Flows provisions of the RRCA Accounting Procedures to bring them into conformance with the intent of the Final Settlement Stipulation (FSS); 5) continue work on documenting historical changes to the RRCA Accounting Procedures; 6) provide updates on the progress of new and ongoing management strategies for maintaining compact compliance; 7) continue development and maintenance of the RRCA administrative website that serves as an informational page for the public and provide regular updates to the EC; 8) continue work and provide updates on improving accounting tools developed by the Engineering Committee; 9) prepare the 2020 RRCA annual meeting report; and 10) make a recommendation on a course of action for dealing with the 2019 PRISM data correction.

Ongoing assignments include: 1) hold quarterly meetings; 2) continue work on documenting historical changes to the RRCA Accounting Procedures; 3) provide updates on the progress of new and ongoing management strategies for maintaining compact compliance; 4) work on maintaining and enhancing the RRCA public website; 5) continue work and provide future updates on improving accounting tools developed by the Engineering Committee.

The EC recommends discussion by the RRCA on the exchange of data, modeling results, and proposed accounting for 2020 incorporating the EC's proposed course of action for dealing with the 2019 PRISM data correction; retention of Principia Mathematica; modeling and data tasks to be assigned to Principia Mathematica for 2021; the status of the document summarizing historical changes to the RRCA Accounting Procedures; the ongoing maintenance and updating of the RRCA website; and recommended EC assignments and other potential assignments for the next year.

Details of the various EC tasks are described further in the remainder of this report, including:

Attachment 1: Minutes of the quarterly meetings of the EC Attachment 2: Accounting Inputs and Accounting Tables from the RRCA Accounting for 2020 recommended by the EC for approval by the RRCA (Task 3) Attachment 3: Compilation of documents exchanged and meeting summaries regarding the Flood Flows provision of the RRCA Accounting Procedures (Task 4) Attachment 4: *Summary of Historical Changes to the RRCA's Accounting Procedures and Reporting Requirements* (Task 5)

COMMITTEE ASSIGNMENTS AND RELATED WORK ACTIVITIES

- 1. Meet quarterly to review the tasks assigned to the committee.
 - a. The EC met October 7, 2020; January 7, 2021; April 20, 2021; and July 21, 2021. See Attachment 1 for the approved notes of these meetings.
 - b. The EC recommends that this task continue.
- 2. Exchange by April 15, 2021, the information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, and other data required by that document, including all necessary documentation. By July 15, 2021, the states will exchange any updates to these data.
 - a. Nebraska posted its data on April 15, 2021, and provided an update on May 18, 2021.
 - b. Kansas posted its data on April 14, 2021, and provided an update to the data on July 8, 2021.
 - c. Colorado posted its data on April 8, 2021, and added Crop Irrigation Requirement (CIR) data on June 7, 2021.
- 3. Finalize the 2020 accounting and recommend it for approval by the RRCA.
 - a. Colorado, Kansas, and Nebraska accounting data for 2020 are final and the EC hereby recommends approval of the accounting by the RRCA.
 - b. The applicable summary accounting tables are presented in Attachment 2.
- 4. Continue to work on developing a recommendation for modifying the Flood Flows provisions of the RRCA Accounting Procedures to bring them into conformance with the intent of the FSS.
 - a. Nebraska proposed revised Accounting Procedures to correct the Attachment 6 calculation of Virgin Water Supply Guide Rock to Hardy to Computed Water Supply Guide Rock to Hardy with a placeholder for the reach's Flood Flow adjustment. Willem Schreuder provided comment on the draft which was incorporated by Nebraska. Kansas recommended that the draft not be brought to the Commissioners without full resolution of the issue. The draft edit to the Accounting Procedures is included in Attachment 3.
 - b. Kansas provided a revised proposal to the Engineering Committee to cap Nebraska's Allocation Guide Rock to Hardy in Table 5C at 33,485 acre-feet when the Flood Flows adjustment is being applied. The EC reviewed and discussed this proposal. The documents associated with Kansas' revised proposal are provided in Attachment 3.
 - c. In addition to discussions at the quarterly committee meetings, the EC met on May 18, 2021, and June 22, 2021, to continue work on developing a recommendation. Summaries of these meetings are provided in Attachment 3.
 - d. The EC, with Nebraska and Kansas proposals having maintained enough discrepancy through this year's work and given the apparent infrequency in which flood flow adjustments may impact compliance tests, does not recommend continuation of this assignment next year.

- 5. Continue work on creating a document memorializing when RRCA Accounting Procedures have changed over the years and incorporate it into the Accounting Procedures.
 - a. The EC has completed a working version of the "AP tracking" document for review by the RRCA, titled *Summary of Historical Changes to the RRCA's Accounting Procedures and Reporting Requirements*. The document is provided as Attachment 4.
 - b. The EC requests that the RRCA consider a standing assignment to the EC to maintain the AP tracking document and publish it on the RRCA public website.
- 6. Provide updates on the progress of new and ongoing management strategies for maintaining compact compliance.
 - a. Nebraska provided updates on projects in-progress by the Nebraska Bostwick Irrigation District (NBID) and Kansas Bostwick Irrigation District (KBID) (automation of Superior/Courtland headgates); NBID (work on the Superior Canal); and updates to Integrated Management Plans for the Upper, Middle, and Lower Republican Natural Resources Districts (NRD). In addition, Nebraska described NBID and Lower Republican Natural Resource NRD's submittal for a WaterSMART grant to fund alternate locations and sources of water for the Superior Canal. Nebraska provided updates on contracts in development with Frenchman Valley Irrigation District (FVID) and Middle Republican NRD (a remote metering contract).
 - b. Kansas provided updates on KBID's project to automate the Courtland Canal and Kansas's second round of cost-share grant awards in the south fork of the Upper Republican River Basin for irrigation efficiency projects.
 - c. Kansas provided updates on their climate-based analyses for evaluating water savings programs. The EC heard presentations by Kansas staff on methods to use climate data to estimate groundwater pumping. The EC discussed possible use of these methods to predict groundwater pumping to improve prospective compact accounting estimates for planning purposes. The EC recommends the RRCA discuss these analyses and their potential uses.
 - d. Colorado provided updates on deliveries by the Colorado Compliance Pipeline.
 - e. The EC recommends this task as a recurring assignment.
- 7. Continue efforts to develop and publish an administrative website that would be an informational page for the public.
 - a. State staff have maintained and updated the website, which is accessible to the public, and reported back to the EC.
 - b. The EC recommends this task as a recurring assignment.

- 8. Continue work and provide future updates on improving accounting tools developed by the Engineering Committee.
 - a. The EC continues to use the website accounting tool to validate the accounting spreadsheet results.
 - b. The EC discussed the overlap in the Courtland above Lovewell and Attachment 7 inputs and calculations that when combined with varying data sources were causing inconsistencies in the accounting spreadsheet. The EC will continue to pursue this issue to improve the accounting spreadsheet.
 - c. The EC recommends this task as a recurring assignment.
- 9. Prepare the 2020 RRCA annual meeting report for approval by the RRCA at the 2021 annual meeting.
 - a. The report has been finalized and approved by the EC and is hereby recommended for approval by the RRCA.
- 10. Make a recommendation on a course of action for dealing with the 2019 PRISM data correction.
 - a. After the 2019 accounting was approved at the 2020 annual meeting, PRISM precipitation data for 2019 were revised for nine stations used in generating ground water model inputs. The EC discussed how this would impact the 2019 accounting and how to calculate the accounting for 2020.
 - b. The EC recommends that the accounting for 2019 be left as it is since the states' compliance for 2019 is not impacted by the updated PRISM precipitation data which result in small differences in ground water model results.
 - c. The EC recommends that the 2020 accounting use ground water model runs with starting heads for 2020 that incorporate the correction for 2019, and documentation explaining the difference is included with the 2020 accounting.

ITEMS FOR RRCA DISCUSSION & ACTION

- 1. Data exchange and modeling results for 2020 incorporating the EC's proposed course of action for dealing with the 2019 PRISM data correction. The EC recommends the proposed 2020 accounting presented in Attachment 2 and in the spreadsheet titled "RRCA Accounting 2020 Final.xlsx" for approval by the RRCA. Upon approval of the accounting, the above-mentioned spreadsheet file will be placed on the public website.
- 2. Retention of Principia Mathematica.
- 3. Modeling and data tasks to be assigned to Principia Mathematica for 2021. The EC recommends that Principia Mathematica continue to maintain the web-based accounting tool and perform periodic model and accounting updates at the same level of service as in 2020.

- 4. The status of the document summarizing historical changes to the RRCA Accounting Procedures (Attachment 4).
- 5. The EC has continued to maintain and update the RRCA website. The website's purpose is to provide public information, including history of the compact and the RRCA, links to compact-related data and reports, state information, etc. The EC requests any additional comments and direction from the commissioners on the content that the RRCA wants published to the website.
- 6. Discussion of the recommended EC assignments and other potential assignments for the next year and agreement on a final set of assignments. The EC presents the following list of recommended assignments to report on at the 2021 annual meeting of the RRCA.

RECOMMENDED ASSIGNMENTS FOR THE COMING YEAR

The Engineering Committee recommends that the Republican River Compact Administration assign the following tasks:

- 1. Meet quarterly to review the tasks assigned to the committee.
- 2. Exchange by April 15, 2022, the information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, and other data required by that document, including all necessary documentation. By July 15, 2022, the states will exchange any updates to these data.
- 3. Finalize the 2021 accounting and recommend it for approval by the RRCA.
- 4. Maintain and publish updates to *Summary of Historical Changes to the RRCA's Accounting Procedures and Reporting Requirements* as necessary.
- 5. Provide updates on the progress of new and ongoing management strategies for maintaining compact compliance.
- 6. Continue development and maintenance of the RRCA administrative website that serves as an informational page for the public and provide regular updates to the EC.
- 7. Continue work and provide future updates on improving accounting tools developed by the Engineering Committee.
- 8. Prepare the 2021 RRCA annual meeting report for approval by the RRCA at the 2022 annual meeting.
- 9. Retain a contract with Principia Mathematica for the period and scope outlined by the Commissioners.

The Engineering Committee Report and the exchanged data will be posted on the web at http://republicanriver.org/

SUBMITTED TO THE RRCA BY

Ivan Franco, Engineering Committee Member for Colorado

Christopher Beightel, Engineering Committee Member for Kansas

Kari Burgert, Chair and Engineering Committee Member for Nebraska

RRCA Engineering Committee Report for 2020

Meeting minutes for the QUARTERLY MEETING of the ENGINEERING COMMITTEE of the REPUBLICAN RIVER COMPACT ADMINISTRATION October 07, 2020 1:30 PM Central Time

Meeting was held via Zoom meeting.

Attendees:

Chris Beightel KS	Carol Myers Flaute, NE
Kari Burgert, NE	Ivan Franco, CO
Hongsheng Cao, KS	Hua Guo, NE
Margeaux Carter, NE	Lizzie Hickman, KS
Alexa Davis, NE	Philip Paitz, NE
Chelsea Erickson, KS	Sam Perkins, KS
Elizabeth Esseks, NE	Willem Schreüder, CO
	Shea Winkler, NE

1. Introductions

- 1.1. The meeting started at approximately 1:35 PM.
- 2. Review/Modify Agenda
 - 2.1. The EC representatives agreed to move Sam Perkins' presentation to first on the agenda.
- 3. Kansas' Precipitation and Irrigation Analysis
 - Sam Perkins shared an analysis that he has been working on using climate-based regression estimators to evaluate water savings programs.
 - Summary:

To assess the effectiveness of Local Enhanced Management Areas (LEMAs), initiated by Groundwater Management Districts (GMDs) in Kansas, and Water Conservation Areas (WCAs), initiated by individual or groups of water right holders in Kansas, on preserving groundwater resources requires distinguishing climatic impacts from change in water use behavior. A climatebased regression estimator of water use can help do this. For years when a water-savings program is in effect, the difference between reported use and estimated use represents the climate-adjusted water use savings, accounting for the uncertainty of the regression estimate. Estimators are based on monthly PRISM data for precipitation and temperature, with ET given by the Hargreaves-Samani approximation.

Two LEMAs operate in GMD4 within the RRCA GW model domain in KS. Sheridan-6 (SD-6), a 99-sq mi area mostly in Sheridan County, was established in 2012, and has shown significant reductions in water use and water level declines. In 2017, a district-wide LEMA was established, excluding minor areas without water level declines. In the analysis, simple regressions of water use versus precipitation are used to distinguish climatic variability from water use reductions for these, accounting for uncertainty of the estimates. For the GMD4 LEMA, a two-variable regression model is also shown, based on both precipitation and ET.

GMD4 accounts for about 91 percent of pumping and irrigated area reported by Kansas for RRCA GW model domain 2000-2019. For each state, reported pumping was plotted against annual precipitation for 2000-2017 for CO, KS, and NE. Data were summarized using rrppKS, a version of the Republican River preprocessor. The period 2000-2017 was selected to look for the effect of the GMD4 LEMA on KS water use for 2018-2019, and any such effects in CO and NE. Average pumping reductions in 2018-2019 compared with 2000-2017 are adjusted for climatic differences.

- Action item: Sam will share his presentation with the group.
- 4. Review and Update Progress on Engineering Committee Task List Addition of assignment 10 on the PRISM data correction

4.1. Meet quarterly to review the tasks assigned to the committee.

- No comments
- 4.2. Exchange by April 15, 2021, the information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, and other data required by that document, including all necessary documentation. By July 15, 2021, the states will exchange any updates to these data.
 - No comments
- 4.3. Finalize the 2020 accounting and recommend it for approval by the RRCA.
 - No comments
- **4.4.** Continue to work on developing a recommendation for modifying the Flood Flows provisions of the RRCA Accounting Procedures to bring them into conformance with the intent of the Final Settlement Stipulation (FSS).
 - Chris said that he believes that the last proposal was from Kansas. He suggested that everyone look at that proposal and either discuss it at the next quarterly meeting or hold an extra meeting to discuss the Kansas proposal before the January quarterly meeting.
 - Kari suggested an additional incremental approach in which the EC would get the wording in the Accounting Procedures fixed with regard to above and below Guide Rock Virgin Water Supply (VWS) versus Computed Water Supply (CWS). If a Flood Flows term is added to change to Computed Water Supply from Guide Rock to Hardy, then the EC can work on how to calculate the flood flow at a later time. Kari suggested all would agree that the flood flow from Guide Rock to Hardy is zero if there is no flood flow.
 - Chris agreed to Kari's proposal.
 - Ivan asked to be copied on correspondence related to this assignment.
 - Action item: Nebraska will send out draft language for the Accounting Procedures that corrects the formulation for CWS from Guide Rock to Hardy.
 - Action item: Everyone will review Kansas' most recent proposal for flood flow adjustment change.
 - Action item: Everyone will copy Colorado on correspondence related to flood flows assignment.
- **4.5.** Continue work on creating a document memorializing when RRCA Accounting Procedures have changed over the years and incorporate it into the Accounting Procedures.
 - Chelsea sent a draft document before the annual meeting.
 - Kari volunteered to incorporate the most recent changes to Accounting Procedures into the tracking document.
 - Chris reminded the group that the original intent of the tracking document was to leave "breadcrumbs" about what people were thinking when the APs were changed (describe where we'd been and then how we got here).
 - Action item: Nebraska (Kari) will add Accounting Procedures revisions from the 2020 RRCA annual meeting to the draft tracking document and distribute the draft to Kansas and Colorado for review (the goal is to distribute the draft document before the next quarterly meeting).
- **4.6.** Provide updates on the progress of new and ongoing management strategies for maintaining compact compliance.
 - Chris reported that there were no updates from Kansas.
 - Kari reported on ongoing Nebraska projects.
 - Nebraska Bostwick Irrigation District (NBID) and Lower Republican NRD submitted a WaterSMART application for alternate locations and sources of water for the Superior Canal.

- NBID and Kansas Bostwick Irrigation District (KBID) are working on automation of Superior/Courtland head gates automation project.
- Willem gave an update on the Colorado Compliance Pipeline (CCP). The last information he heard was that Colorado was in good enough shape with compact compliance that it wouldn't be necessary to run the pipeline the rest of the year. However, the district is planning to start the CCP in December and then ramp it up. This would serve two purposes: Colorado would be over-delivering this year to dampen out positive and negative swings (there are predictions for drop-off the next two years); and the action could help mitigate winter flooding caused by ice jams. The plan is to run about 6,000 acrefeet early in 2021.
- Willem said that another strategy is to get people to sign up for CREP to retire land; progress has been slow.
- Chris asked about CREP re-enrollments in Nebraska. Carol said that she understood that most producers re-enrolled at the last minute.
- Action item: Kansas (Chris) will follow up about the KBID WaterSMART application for gate automation and report back at the next meeting.
- 4.7. Continue development and maintenance of the RRCA administrative website that serves as an informational page for the public and provide regular updates to the EC.
 - Chelsea reported that all documents from the annual meeting were loaded onto the website; she also updated the website with staffing changes and fixed broken links. Please contact Chelsea if you need help or want changes made. The 58th Annual Report is on the website.
 - Carol mentioned that the documents that were signed electronically for this year's meeting include the electronic tracking page for each document. She said that if anyone feels strongly that we should have copies of electronically signed documents without the electronic tracking page, let her know and she can generate a copy without the tracking page to be uploaded onto the website.
 - Chris said he has no preference on including the electronic tracking page.
 - Carol suggested adding the annual meeting date to the name of the report on the RRCA website because the report date is confusing. Chris suggested adding the meeting date and location that the report is about to the website.
 - Willem reminded the group that the early reports were labeled differently, so the process changed at some point (perhaps around 2002). Chris mentioned that reviewing the meeting transcript slows down the approval of the report. Willem suggested looking at the same description on his website.
 - Action item: Nebraska (Carol) will send out the Nebraska spreadsheet for tracking meeting year/report numbers.
 - Action item: Kansas (Chelsea) will work on language to clarify how reports are described.
 - Action item: Anyone who has an opinion about the electronic tracking page being included or excluded from electronically signed documents from the 2020 Annual Meeting will share that at the next meeting.
- 4.8. Continue work and provide future updates on improving accounting tools developed by the Engineering Committee
 - There was nothing to add other than fixing the flood flows issue.
- 4.9. Prepare the 2020 RRCA annual meeting report for approval by the RRCA at the 2021 annual meeting
 - There was an update on the status of the transcript and meeting summary for the August 21, 2020, Annual Meeting.
 - Action item: Ivan will return the annual meeting transcript to Elizabeth when he is finished reviewing it.

• Action item: Elizabeth will send the meeting summary and draft report out for external review when she has completed it.

4.10. Make a recommendation on a course of action for dealing with the 2019 PRISM data correction.

- Willem described the issue. Nine stations have changes in total precipitation of about an inch. It's hard to tell that there are any differences even though there are. The differences in model results are about 55 acre-feet for Colorado; 10 acre-feet for Kansas; and 466.50 acre-feet for Nebraska. If you carry it forward with accounting for 2020 and 2021 and compare original and corrected, the difference for 2019 for Colorado is 40 acre-feet; Kansas is 5 acre-feet, and Nebraska is 197 acre-feet.
- Willem said that the differences in 2019 don't impact compact compliance, but it would be best to fix the problem. Willem posted all the runs in the write-up he provided. Willem suggested three possible ways to deal with the changes.
 - One option is to treat the data as if the changes never happened and carry the mistake forward through 2020 and 2021.
 - The second option is to correct the 2019 run, which the EC hasn't done before (the practice has not been to correct after the accounting has been approved) and use PRISM data moving forward.
 - The third option is to recognize that there is an error in 2019: don't change 2019 data but take a run of the 2019 correction and have that be the starting condition for 2020. There would be a discontinuity between 2019 and 2020 the same way there was a discontinuity between 2006 and 2007 when the five-run procedure was adopted. This option is Willem's recommendation (fix the problem with the initial heads but leave the 2019 modeling and accounting as it is).
- Chris said that the third option sounds reasonable and sensible. He wants to have internal discussion with Kansas staff.
- Kari indicated that Nebraska is leaning toward option 3, with the distinction of preferring to archive the 2019 run and have the continuous run have the revised 2019 data but that might be something that Nebraska will just need to do for internal modeling.
 - Willem said that making the correction as described in option 3 would only affect the groundwater model. The 2020 starting heads would be different than the 2019 ending heads. The 2019 special run would be provided as a separate zip file, with an explanation of what was done.
- Chris asked how the EC should document the correction. Willem referenced the situation in 2007. On the main page of the description (for modeling and accounting) there is a reference indicating that the starting heads are special (they are different than the ending heads for 2006). The runs are included in the data folder.
- Sam asked how the multi-year simulation using current precipitation data will be affected by this. Willem indicated that is always a problem, but there is already the issue of the difference between 2006 and 2007. For future projections this may not make those runs more or less reliable because the changes are so small. However, if we were trying to do a continuous run from 1980 to 2020, that can't be done anymore. Continuous runs also can't be done because of multiple changes in models.
- Action item Kansas and Nebraska will report back at the next meeting on review made internally about the PRISM data correction.
- 5. Summary of Meeting Actions/Assignments (in bold)
- 6. Future Meetings
 - Q2 January 6, 2021, 2:00 pm Central
 - Q3 April 20, 2021, 1:30 pm Central
 - Q4 July 21, 2021, 1:30 pm Central
- 7. Adjourn

The meeting adjourned at approximately 3:10 PM.

Meeting minutes for the QUARTERLY MEETING of the ENGINEERING COMMITTEE of the REPUBLICAN RIVER COMPACT ADMINISTRATION January 7, 2021; 10 – 11 AM CT

Meeting was held via Zoom meeting.

Attendees:

Carol Myers Flaute, NE Ivan Franco, CO Sam Perkins, KS Willem Schreüder, CO

- 1. Introductions
 - 1.1. The meeting started at approximately 10:05 AM.
- 2. Review/Modify Agenda
 - 2.1. Meeting times for April and July were corrected to 2 PM CT.
- 3. Review and Update Progress on Engineering Committee Task List
 - 3.1. Meet quarterly to review the tasks assigned to the committee.
 - No comments
 - 3.2. Exchange by April 15, 2021, the information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, and other data required by that document, including all necessary documentation. By July 15, 2021, the states will exchange any updates to these data.
 - No comments
 - 3.3. Finalize the 2020 accounting and recommend it for approval by the RRCA.
 - Willem sent out an updated accounting draft which still includes estimates earlier this week. Let him know if there are issues.
 - **3.4.** Continue to work on developing a recommendation for modifying the Flood Flows provisions of the RRCA Accounting Procedures to bring them into conformance with the intent of the Final Settlement Stipulation (FSS).
 - Kari sent out a draft revision to the Accounting Procedures that has a placeholder for what the Flood Flows adjustment would be in the calculation of the computed water supply from Guide Rock to Hardy. The group reviewed the proposed edits in section H and Attachment 6. The proposed edits indicate that the computed water supply should include subtraction of the Flood Flow adjustment, calculation of which has not yet been determined.
 - Willem made a comment about the proposed language for the Flood-Flows term being vague in lines 558 and 559 of Kari's draft. Willem said the draft language is not clear if the term is subtracted from both gages, one gage, or the total. He proposed to revise the language and typed his suggestion into the chat: "A Flood Flow adjustment term will also be subtracted in the Computed Water Supply calculation between Guide Rock and Hardy." Kari will re-word Willem's suggestion and send the revised language to the group for review.
 - Kari reviewed the edits to Attachment 6. Some proposed changes were to fix existing mistakes, and some were specific to the Flood Flows edit.
 - Chris asked if Kari had reviewed the last interactions between Kansas and Nebraska on modifying the

Flood Flows provision. Kari responded that the Nebraska team reviewed the emails and were reminded of the different approaches the states were taking in calculating the Flood Flow adjustment applicable to the Table 5C test. She said that it would be helpful to know what criteria Kansas was using to evaluate the proposed Flood Flow adjustments and that working together to identify what would make a good Flood Flow adjustment conceptually might be an alternative path forward. Chris suggested that Kansas and Nebraska have a focused meeting to discuss just the Flood Flows adjustment.

- Action item: NE (Kari) will re-word Willem's suggestion for revised language describing the Flood Flow adjustment term and send it back to the group for input
- Action item: NE will propose times to meet to discuss the Flood Flows issue

3.5. Continue work on creating a document memorializing when RRCA Accounting Procedures have changed over the years and incorporate it into the Accounting Procedures.

- Nebraska sent out a revision. Chris said that the Kansas team discussed the revisions and they look good. The level of detail in the notes made Chris wonder if the group is taking this document in the right direction. Chelsea said the original intent of the document was to explain why the Accounting Procedures were changed and refer to the specific annual meeting documents for additional information. A simple document could be used as a tool by public and federal partners (e.g. a list of what happened and where more information can be found).
- Kansas will finish the review and return comments to the group. Chris suggested that the document memorializing Accounting Procedures changes be patterned after the website, which would be very neutral and point to a specific resource for more information.
- Ivan said that the draft document seems more complete, and he looks forward to hearing the Kansas comments. Ivan reported that he had no substantive comments yet on the revision.

• Action item: KS will provide revisions to NE and CO for review.

- 3.6. Provide updates on the progress of new and ongoing management strategies for maintaining compact compliance.
 - Chris gave an update on Kansas Bostwick Irrigation District's (KBID) WaterSmart project. The manager, Pete Gile, is waiting to hear if the district's grant application for automation of the Courtland Canal was approved. KBID is busy right now burying a couple of half mile lengths of pipe; that project is funded with Nebraska settlement money.
 - Willem reported that the Colorado Compliance Pipeline (CCP) is up and running. It started on December 14, 2020, and ramped up gradually, delivering 400 acre-ft in December for an annual total of 6166 acre-feet. That total puts Colorado in the black for approximately 1000 acre-feet for 2020, subject to revision. The expectation is to pump 9000 acre-feet during 2021 (approximately 5000 6000 acre-feet in the spring, and the rest later in the year). The exact break-even number would be 9000 acre-feet.
 - Kari reported that Nebraska Bostwick Irrigation District (NBID) is waiting to hear about their WaterSmart application. Regular updates on the Platte-Republican Diversion project are being posted on the NeDNR surface water permitting webpage.
- 3.7. Continue development and maintenance of the RRCA administrative website that serves as an informational page for the public and provide regular updates to the EC.
 - Chelsea reported that she updated the annual report page. Language that had been reviewed by Ivan, Andy Pedley, and Chelsea was inserted at the beginning of that page. There is a log of water reports from Nebraska that Chelsea turned into a PDF and added a title. She sent the draft document to Ivan and Andy for review. Chelsea will post the log of water reports after she gets feedback from Ivan and Andy. Otherwise Chelsea reported that there were no other changes. She has been doing regular maintenance and updates. Chelsea copied all text from the website into a Word file in case the website failed (she can also call GoDaddy and ask them to re-set to a previous version of the website).
 - Willem mentioned that the complete 1985 annual report has been uploaded to his website (after being re-scanned). Chelsea will copy the document from Willem's website to the RRCA website.

- 3.8. Continue work and provide future updates on improving accounting tools developed by the Engineering Committee
 - No update

3.9. Prepare the 2020 RRCA annual meeting report for approval by the RRCA at the 2021 annual meeting

- Kari said that Nebraska had received edits back from the transcriptionist, and the revised transcript will be included in the meeting summary when it is sent out for review. Kari proposed that everyone think about how much editing we should do of the transcript since it is an independent record of the meeting; there is also a meeting summary. Elizabeth reported that she is still working on the meeting summary.
- Chelsea made a comment about using court reporters or generating a record of the annual meeting inhouse. The transcript is the official record of the meeting, so it should be the best record it can be. Maybe with technology available now we can start doing some of that work ourselves.
- Willem mentioned that for his class, the university gets a transcript as part of the lecture recording. The transcript is very accurate, but it doesn't capture who said what (since it just uses the Zoom recording). A transcript like that could be a good starting place for a complete meeting transcript.
- Kari said she believes that the Rules and Regs require that there be a recording of the meeting and the host state must make the recording available upon request. Previously it had been more difficult to make a recording available compared to making a transcript available. Chris said that in the past the transcript was needed because of the litigious nature of the meetings.
- Chris recommended asking the commissioners to give the EC an assignment to re-evaluate how the annual meetings should be documented and recorded. For example, Zoom meetings can be recorded and people can see who said what.
- Carol asked if the transcript needs to be part of the annual report. Chris reminded the group that in the future the people involved with the RRCA may not get along, and there could be potential issues that would require documentation with a transcript.
- Willem typed a link in the chat about Zoom audio transcription: <u>https://support.zoom.us/hc/en-us/articles/115004794983-Using-audio-transcription-for-cloud-recordings-</u>
- Action item: the EC will ask commissioners to assign the EC a task to determine how annual meetings should be documented or recorded moving forward (e.g. transcript versus recording).

3.10. Make a recommendation on a course of action for dealing with the 2019 PRISM data correction.

- Willem reminded the group that the present data was refreshed after 2019 had been finalized. He reran the 2019 groundwater model simulations with the new data. The difference is approximately 100 acre-feet. Willem's recommendation is to update the starting heads for 2020 to new data but leave 2019 alone.
- Chris said that at the last meeting he indicated that Kansas agreed with Willem's suggestion about using the 2019 PRISM data.
- Chris wanted to know how the correction would be documented. Willem said that the EC could do the same thing that was done in 2017. On the main page of the posted runs for 2020, there would be a short description of what it is, included the revised 2019 runs documenting how data for the new 2020 starting heads was generated. Chris asked if there is an official RRCA document for this. Willem responded that there is a write-up on the website, which could be the basis of an appendix for the EC report. Chris proposed to include the documentation in the EC report, to explain that this is what happened, and this is what the EC did. Ivan and Kari agreed. Willem proposed that someone revise what he wrote into an appendix for the EC report.
- Kari said that Nebraska is still looking at a few more details and will decide about the 2019 PRISM data before the next EC meeting. Nebraska will bring a recommendation about how to document the correction to the next EC meeting.
- Action item: NE will decide about PRISM data correction and will bring a proposal for

Attachment 1 Engineering Committee Meeting Minutes documenting the correction to the next EC meeting.

- 4. Summary of Meeting Actions/Assignments (in bold)
- 5. Future Meetings
 - Q3 April 20, 2021, 2:00 pm Central
 - Q4 July 21, 2021, 2:00 pm Central
- 6. Adjourn

The meeting adjourned at approximately 10:51 am.

MINUTES for the **OUARTERLY MEETING of the ENGINEERING COMMITTEE of the REPUBLICAN RIVER COMPACT ADMINISTRATION** April 20, 2021 2:00 PM Central Time

Meeting was held via Zoom meeting.

Attendees:

Chris Beightel KS	Elizabeth Esseks, NE
Jesse Bradley, NE	Carol Myers Flaute, NE
Kari Burgert, NE	Ivan Franco, CO
Hongsheng Cao, KS	Lizzie Hickman, KS
Alexa Davis, NE	Sam Perkins, KS
David Engelhaupt, KS	Willem Schreüder, CO
Chelsea Erickson, KS	

1. Introductions

- 1.1. The meeting started at 2:05 pm.
- 2. Review/Modify Agenda
 - 2.1. No changes were made.
- 3. Review and Update Progress on Engineering Committee Task List (Below agenda items)
 - 3.1. Meet quarterly to review the tasks assigned to the committee.
 - Today is the third quarterly meeting, and the EC is scheduled to meet again July 21, 2021.
 - 3.2. Exchange by April 15, 2021, the information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, and other data required by that document, including all necessary documentation. By July 15, 2021, the states will exchange any updates to these data.
 - Nebraska submitted data on April 15. Nebraska expects to make an update to groundwater pumping and acres due to missing data in Dundy County. Nebraska agrees that Willem's total for Haigler/Pioneer diversions in Nebraska is the correct value and should be updated. Nebraska was using US Bureau of Reclamation (Bureau) data for the Courtland Canal flow at the state line, which differed from the flow recorded by the USGS. Kari contacted the Bureau, and they recommended using US Geological Service (USGS) data at that location. Willem suggested changing the source for the surface water input tab for the Courtland Canal at the state line to the USGS gage and Kari agreed as long as that is what the Bureau recommends.
 - Colorado submitted data on April 8. Willem said that the Annual Crop Irrigation Requirement (CIR) • update is still outstanding, but they will get it before July.
 - Kansas submitted data on April 14. Willem asked about the 12-mile discrepancies between pumping and recharge. David explained that producers overlap in the same place of use but it's unlikely that they irrigate the places where they overlap in all cases. Chris added that overlaps are reported by water right and by seniority for administration purposes. Willem asked how we can detect when it's a mistake and when it's legitimate. David suggested checking the overlaps individually when there are very large distances. Willem suggested automating the process since there are more than 1,000 overlaps. David recommended checking the largest overlaps to be sure they're right. Chris said that Kansas would check into this and report back if they come up with a plan to resolve this issue. Kari asked if pumping and recharge would change based on resolution of overlap issue. Sam said he would expect to see small to negligible change in recharge associated with location changes of irrigation tracts. Kansas will provide a data update in June.
 - Action item: Kansas will work on a solution to resolve the overlap issue.

• Willem said that 2020 pumping, mostly for the west side of the basin, was very high. He based the 2021 pumping projection on 2019 instead of 2020. Sometime, he would like to discuss whether the group thinks that was the right thing to do. For example, Colorado pumping last year was up 30% from 2019. Other than 2002 and 2012, 2020 was the highest year in the last 20 years. Willem is hopeful that 2021 will be closer to average. The change in Colorado depletions for 2021 based on 2021 projections for pumping is small; Willem isn't sure about the change in depletions for Kansas and Nebraska. Kari said that Nebraska will get the rest of the pumping data into 2020 files and then will let Willem know what Nebraska proposes for the prospective run for 2021.

• Action item: the states will provide data exchange updates to each other by July 15, 2021.

3.3. Finalize the 2020 accounting and recommend it for approval by the RRCA.

- The outstanding data exchange items were noted above. Willem and Nebraska had a few differences which are being resolved (Courtland Canal at state line and Haigler gaged flows).
- Willem commented that USGS has finalized surface water inputs gage data.
- 3.4. Continue to work on developing a recommendation for modifying the Flood Flows provisions of the RRCA Accounting Procedures to bring them into conformance with the intent of the FSS.
 - Nebraska sent out an email March 1 with the recommended language edit to the Accounting Procedures suggested by Willem at the January meeting. Willem approved of the language. There were no other comments from Kansas and Colorado.
 - Kari asked if the group wants to discuss this topic more at the July meeting or if the group is ready to take a draft to the commissioners at the annual meeting. Chris suggested more discussion, including the reason for adopting the proposed interim language when no procedure for calculating the Flood Flows adjustment for the basin above or below Guide Rock has been defined. He said that the existing language is fine, but it seems appropriate to take a draft to the commissioners when we reach an agreement about the procedure for calculating the Flood Flows adjustment for the basin above or below Guide Rock has been defined. He said that the existing language is fine, but it seems appropriate to take a draft to the commissioners when we reach an agreement about the procedure for calculating the Flood Flows adjustment for the basin above or below Guide Rock. There is a conceptual framework, but he's not sure what the path forward is.
 - Action item: Nebraska (Kari) will send a doodle poll proposing dates to have a focused meeting on calculation of the Flood Flows provisions.

3.5. Continue work on creating a document memorializing when RRCA Accounting Procedures have changed over the years and incorporate it into the Accounting Procedures.

• Chelsea provided an update. Kansas has been reviewing the last draft from Nebraska that included comments and suggestions. We are probably at a point where we need to decide what to do with this document. It is an open-ended work assignment and there will probably be future updates to the APs. Chris said we need to discuss this topic when we meet to see if we can continue or finish the document. The original intent was for this to be a common reference point for all states. Chris asked if this is something we want to continue doing. Kari said that since this is an assignment from the commissioners, she would want to check with the Nebraska commissioner for his preference on that. Kari asked if Kansas is working on revisions. Chelsea said that they are trying to determine how much detail to include in the document. Ivan said that he is waiting to see what the edits are from Kansas. Ivan agrees that the EC is doing what was assigned by commissioners; there is value in this document for future EC members; and there are concerns about what if any implications the document might have.

• Action item: Kansas will continue to work on the draft and will send it for review soon.

- 3.6. Provide updates on the progress of new and ongoing management strategies for maintaining compact compliance.
 - Willem reported that the Colorado Compliance Pipeline (CCP) was shut off last Friday (April 16); it has pumped 6,393 acre-feet so far this year. The estimate is that the pipeline will pump an additional 3,000 acre-feet at the end of the year, depending on the summer. There is no flow yet at the Arikaree and Benkelman gages. The South Fork state line gage started slowly at 3 cubic feet per second (cfs) and now is at 8 cfs.
 - Carol reported that Nebraska Bostwick Irrigation District (NBID) was awarded a WaterSMART grant to fund work on the Superior Canal. NeDNR and Kansas Bostwick Irrigation District (KBID) have committed funds to that project, also. Nebraska is working on updates for Upper Republican, Middle Republican, and Lower Republican Natural Resources District (NRD) Integrated Management Plans (IMP). Stakeholder meetings took place in March; NeDNR expects the NRD boards to vote next

month to advance the proposed plans to public hearings in June, with the plans taking effect at the end of September. There are editorial and formatting changes to the plans, but there are no significant changes to the plan goals, objectives, and controls.

- Chris reported that in the same round of WaterSMART grants that Carol mentioned, KBID was funded just less than \$800,000 for a \$1,600,000 project to automate the Courtland Canal. The project will automate the canal from the Guide Rock diversion dam to Lovewell Reservoir. Kansas has almost finished the second round of cost-share grant awards in the south fork in the Upper Republican River Basin for irrigation efficiency projects. The funding is from recent settlement money.
- 3.7. Continue development and maintenance of the RRCA administrative website that serves as an informational page for the public and provide regular updates to the EC.
 - Chelsea reported that nothing has happened since the last meeting. The only outstanding task is putting together a PDF document with annual report descriptions, including the year, meeting year, and report year.
 - Chelsea confirmed that the new commissioners are listed on the website.
- 3.8. Continue work and provide future updates on improving accounting tools developed by the Engineering Committee.
 - There were no updates.
- 3.9. Prepare the 2020 RRCA annual meeting report for approval by the RRCA at the 2021 annual meeting
 - The draft meeting summary and attendee list were sent out for review on April 15, 2021, and comments were requested by May 15. Kansas is reviewing the draft and will send comments soon. Colorado hasn't started to review the draft yet.
 - Action item: Colorado and Kansas will review the draft 2020 annual meeting summary and attendee list and return comments to Nebraska by May 15, if possible.
- 3.10. Make a recommendation on a course of action for dealing with the 2019 PRISM data correction.
 - Willem reminded the group that at the last meeting the recommendation was to start the 2021 run off corrected starting heads. That is what he used for the last update that he sent on April 15. Nebraska agreed to recommend to the commissioners to use the updated 2019 run for starting 2020 heads. Kari wrote a paragraph describing the update. She proposed that the group discuss where to include the summary at the next EC meeting. Willem added a short explanation of the problem in the zip file that includes the data for 2020, but he will replace what he wrote with the summary Kari wrote. Willem asked if the detailed write-up should be included on the publicly accessible page.
 - Action item: Kari will send out the draft language describing the update for review.
- 4. Summary of Meeting Actions/Assignments (in bold)
- 5. Future Meetings
 - 5.1. Q4 July 21, 2021, 2:00 pm Central
 - The goal is to have a draft of the EC report ready for distribution at the July meeting.
 - Possible topic for discussion at the next meeting: Is Willem's contract up after 2021 and what needs to be included in EC report to extend?
- 6. Adjourn
 - 6.1. The meeting adjourned at approximately 2:48 pm.

MINUTES for the QUARTERLY MEETING of the ENGINEERING COMMITTEE of the REPUBLICAN RIVER COMPACT ADMINISTRATION July 21, 2021 2:00 PM Central Time

Meeting was held via Zoom meeting.

Attendees	:

Chris Beightel KS	Chelsea Erickson, KS
Kari Burgert, NE	Elizabeth Esseks, NE
Hongsheng Cao, KS	Ivan Franco, CO
Sam Capps, NE	Lizzie Hickman, KS
Alexa Davis, NE	Sam Perkins, KS
David Engelhaupt, KS	Willem Schreüder, CO

- 1. Introductions
 - 1.1. The meeting started at approximately 2:04 p.m.
- 2. Review/Modify Agenda
 - 2.1. Sam Perkins has updated the climate-based pumping estimator; if there's time he will give an update today.
- 3. Review and Update Progress on Engineering Committee Task List
 - 3.1. Meet quarterly to review the tasks assigned to the committee.
 - This is the Engineering Committee's (EC) last scheduled meeting before the annual meeting.
 - The EC members agreed that the April 2021 meeting minutes are final.
 - The Republican River Compact Administration (RRCA) Annual Meeting will be held at McCook Community College on August 25, 2021. Proposed times are 8:30 a.m. for the working session and 10:30 a.m. for the annual meeting. The meeting will be a hybrid in-person and virtual meeting (via Zoom).
 - Action item: Nebraska will send draft agendas for the working session and annual meeting to Colorado and Kansas for review.
 - Action item: Nebraska will notify U.S. Bureau of Reclamation, U.S. Geological Survey, and U.S. Army Corp of Engineers about the annual meeting.
 - 3.2. Exchange by April 15, 2021, the information listed in Section V of the RRCA Accounting Procedures and Reporting Requirements, and other data required by that document, including all necessary documentation. By July 15, 2021, the states will exchange any updates to these data.
 - Nebraska sent updated data on May 18, 2021.
 - Kansas sent final data on July 8, 2021.
 - Colorado sent final Crop Irrigation Requirement (CIR) data on June 7, 2021.
 - There were no comments or questions on the data exchanged.

3.3. Finalize the 2020 accounting and recommend it for approval by the RRCA.

- Willem, Sam Perkins, and Kari have been sending updates to accounting spreadsheets and the accounting website. Kari asked if there are remaining questions on the accounting updates.
 - Willem talked about inconsistencies in the Courtland worksheet and monthly water distribution reports, which include the same data. Willem asked how the EC can prevent the U.S. Bureau of Reclamation (Bureau) from sending two different reports for the same data that are different.
 - Kari talked about this issue recently with Miles Morgan of the Bureau. The Courtland worksheet and monthly water distribution reports contain data reported from the irrigation

districts. The Courtland worksheet is updated monthly, and the monthly water distribution reports are completed at the end of the year. Miles called Nebraska Bostwick Irrigation District (NBID) and found out that NBID had been pulling different summaries for each of the spreadsheets, and they discussed the appropriate data for each. The EC now has updated, corrected Courtland worksheets and monthly water distribution worksheets.

- Kari said that the EC doesn't need to include the same data in two different parts of the spreadsheet, so the EC could simplify the spreadsheet. She suggested that simplifying the spreadsheet and eliminating repetition of data could be an assignment under #8 of the EC task list ("Continue work and provide future updates on improving accounting tools developed by the Engineering Committee"). Chris and Ivan agreed with the suggestion.
- Willem mentioned that part of the problem is there are two different, independent entries that are not tied together; KBID above Lovewell diversions are different in part because of rounding in different places.
- Willem confirmed that the two spreadsheets are now consistent for 2020 data.
- Kari reported that data for the Haigler canal at the state line from the new Colorado Division of Water Resources (DWR) streamgaging website are different depending on which query is used. Willem recommended using daily average discharge values; he believes the summary report has an odd conversion from cubic feet per second (cfs) to acre-feet (AF). Ivan agreed with the recommendation. Willem said that additional discrepancies may have to do with one record being provisional and one being final based on water year.
- Kari indicated that the EC still has a couple of weeks if anyone wants to make a final review before the annual draft EC report is sent out.
- Action Item: Willem will check the input data sites (including PRISM and USGS gaging sites) to see if any of the inputs have changed one last time before the annual meeting.
- 3.4. Continue to work on developing a recommendation for modifying the Flood Flows provisions of the RRCA Accounting Procedures to bring them into conformance with the intent of the Final Settlement Stipulation (FSS).
 - Since the last quarterly meeting, the EC met twice on this assignment, and Kansas submitted an email proposal on June 21, 2021, with an additional email from Kansas with a spreadsheet on July 2, 2021.
 - Kari indicated that Nebraska is not ready to move forward with Kansas' current proposal. She recommended that, given the differences between Nebraska's proposal and Kansas's proposal and given the infrequency of the events associated with this accounting issue, the EC consider wrapping up the assignment for the year, documenting the discussions and progress, and to not recommend this as an assignment for next year.
 - Chris and Ivan agreed to bring Kari's recommendation to the Commissioners in the EC report.
 - It was noted that the Accounting Procedures already describes that the issue needs to be addressed prior to impacting Nebraska's Table 5C compliance.
 - Willem wondered if there could be a year that is water-short and then change to flood flow conditions and concluded that it could happen. Chris commented that going from flood flow conditions to a water-short year is where we get into trouble.
- 3.5. Continue work on creating a document memorializing when RRCA Accounting Procedures have changed over the years and incorporate it into the Accounting Procedures.
 - Chelsea reported that there is a new draft document ready for distribution, so she will send the draft to EC members today or tomorrow. She took out the extra documentation and replaced it with references to the relevant annual report and/or the RRCA website. She suggested that when bringing the document to the Commissioners, they could also provide guidance for where the document should live. Chris added that the document is more streamlined. He hopes the disclaimer language can be softened. Chelsea said that the document will be added to in the future since it is an evolving document.

- Kari asked if this document will go to the commissioners for approval, or if it will be an internal EC document. Chris indicated that he thought it was impractical to get approval from the commissioners for future changes to the document. He proposed that decisions about the document can be made by the EC the same way the EC decides about website changes.
- 3.6. Provide updates on the progress of new and ongoing management strategies for maintaining compact compliance.
 - Colorado had nothing new to report.
 - Nebraska reported that updates on NBID and other projects were given at the 3-States meeting. NBID signed a contract with The Flatwater Group. The Department is working on contracts with Frenchman Valley Irrigation District and the Middle Republican Natural Resources District (a remote meter contract).
 - Kansas Sam Perkins provided an update on the climate-based pumping estimates. Chris commented that people had been behaving the same way for years in western Kansas and Colorado, until 2018, when there was a change in behavior. The same relationship was not observed with Nebraska data.
 - Willem said that when you look at the graph of pumping over time, the data suggest that 2019 pumping was down a lot. However, the county summaries didn't look like low outliers (2020 is a high outlier). Willem wondered if carrying pumping forward from 2019 to 2021 might not be appropriate. Willem asked if it would make sense to come up with an average year and use that as a surrogate during the year before the end-of-year data is available. If there is an estimate by August of what the current year's annual pumping might be, that would be helpful for planning (e.g., Colorado Compliance Pipeline). Sam said that current-year pumping could be estimated using precipitation data from a portion of the year instead of having to wait until the year is over to use the annual precipitation data.
 - Willem said that at the beginning of August, he will start setting up predictive runs for 2022. For the predictive runs, it may be useful to take an average of last five years instead of repeating the last year. Willem commented that when the EC starts estimating 2021, if we can use precipitation as an estimator of what the pumping is, it will help us come up with better estimates for 2021 six months earlier than we would otherwise have it. Sam explained that to measure precipitation, he is using PRISM data from the PRISM grid for each state, averaged over grid cells in each state's active model. Willem asked if Sam could share the estimate for 2021 pumping.
 - The EC discussed recommending work on improving pumping estimates for the prospective accounting runs when there is a need for these.
 - Action item: Kansas (Sam Perkins) will share the estimate for 2021 pumping with the EC.
- 3.7. Continue development and maintenance of the RRCA administrative website that serves as an informational page for the public and provide regular updates to the EC.
 - Chelsea reported that there have been no significant changes to the website. She posted the annual report description document, and she posted a notice for the annual meeting and will update it and add documents once she gets more information.
- 3.8. Continue work and provide future updates on improving accounting tools developed by the Engineering Committee.
 - Kari referred to working on eliminating the Courtland/Attachment 7 data overlaps next year.
- 3.9. Prepare the 2020 RRCA annual meeting report for approval by the RRCA at the 2021 annual meeting
 - Status of transcript and meeting summary for August 21, 2020, Annual Meeting (NE) The draft report is being revised and will be sent out soon for review.
 - Action item: Nebraska will send out the draft annual report to Colorado and Kansas for review soon.
- 3.10. Make a recommendation on a course of action for dealing with the 2019 PRISM data correction.

- Kari confirmed that everyone agreed to using the correction. She sent out a draft description and will include the language again in the draft EC report for people to review and edit.
- Kari proposed to include the description of the correction, the revised 2019 groundwater model run, and 2020 starting heads in the following places: the EC report (under the section describing completion of this task), the recommended approved accounting appendix, the accounting spreadsheet on the website, and the groundwater model files. Willem added that it will be on the website.
- 4. Review of EC report Recommended Discussion and Recommended Assignments sections
 - The EC reviewed a draft list of completed and ongoing assignments for the year and reviewed a draft list of assignments for the next year to be included in the EC annual report.
 - Chris asked if the EC wanted to include more details in the task descriptions. Ivan commented that the specifics are incorporated into the tasks, and the same group of people will be discussing the assignments next year. Chris asked if additional documentation would be helpful beyond meeting minutes and suggested adding sub-bullets. Kari suggested that we start with the basic tasks for recommending as assignment then updating the task list with subtasks at the first EC meeting in October.
 - Recommended Discussion items
 - Kari noted that the PRISM data correction is part of the discussion of the recommended motion to approve the 2020 accounting.
 - Kari added an item for the commissioners to discuss the retention of Principia Mathematica (PM) and how long the contract with PM should be. The states' current 5-year contracts end in 2021. Chris and Ivan agreed.
 - Willem and Chris suggested adding the climate-based pumping estimator to the recommended discussion items. Willem reiterated that using the projected precipitation would be useful for estimating preliminary pumping and would have no official standing.
 - Recommended Assignments
 - In the recommended assignments list, Kari suggested modifying the wording of the assignment to create the document memorializing changes to the Accounting Procedures to remove "and incorporate it into the Accounting Procedures." Chris and Ivan agreed that the language should be changed as Kari proposed.
 - Chelsea suggested keeping the document with the Accounting Procedures on the website or the annual EC report.
 - If a draft of the document is available, that can be presented to the commissioners and reviewed as a discussion item.
- 5. Summary of Meeting Actions/Assignments (in bold)
- 6. Future Meetings
 - 6.1. Action item: Kari will email Colorado and Kansas about scheduling an EC meeting before the RRCA annual meeting, in case the group needs to meet.
- 7. Adjourn
 - 7.1. The meeting adjourned at approximately 3:13 p.m.

Table of Contents

Accounting Inputs	1
Groundwater Data	2
Import Water Data	2
Surface Water Pumping Data	3
Non-Federal Surface Water Consumptive Use	4
Non-Federal Reservoir Evaporation Data	5
Stream Gage Data	5
Hardy Gage Data	5
Reservoir Data	6
Canal Data	6
Accounting Tables	7
Table 1	8
Table 2	9
Table 3A, Table3B, and Table 3C	10
Table 4A and Table 4B	11
Table 5A and Table 5F	12
Table 5B and Table 5E	13
Table 5C and Table 5D	14
Attachments	15
Attachment 1	16
Attachment 6	17
Attachment 7	18
Attachment 8 and Augmentation Pumping Volume and Resolution Water Supply Credits	19
Flood Flow Calculations	20

Accounting Inputs

Calendar Year		2020
Groundwater Data*		
North Fork Subbasin	GW CBCU Colorado	17,390
	GW CBCU Kansas	0
	GW CBCU Nebraska	1,246
Arikaree Subbasin	GW CBCU Colorado	1,646
	GW CBCU Kansas	81
	GW CBCU Nebraska	73
Buffalo Subbasin	GW CBCU Colorado	482
	GW CBCU Kansas	0
	GW CBCU Nebraska	3,603
Rock Subbasin	GW CBCU Colorado	94
	GW CBCU Kansas	0
	GW CBCU Nebraska	5,190
South Fork Subbasin	GW CBCU Colorado	11,037
	GW CBCU Kansas	3,490
	GW CBCU Nebraska	717
Frenchman Subbasin	GW CBCU Colorado	1,137
	GW CBCU Kansas	0
	GW CBCU Nebraska	78,767
Driftwood Subbasin	GW CBCU Colorado	0
	GW CBCU Kansas	0
	GW CBCU Nebraska	811
Red Willow Subbasin	GW CBCU Colorado	0
	GW CBCU Kansas	0
	GW CBCU Nebraska	8,756
Medicine Creek Subbasin	GW CBCU Colorado	0
	GW CBCU Kansas	0
	GW CBCU Nebraska	19,867
Beaver Subbasin	GW CBCU Colorado	0
	GW CBCU Kansas	6,025
	GW CBCU Nebraska	3,875
Sappa Subbasin	GW CBCU Colorado	0
	GW CBCU Kansas	2,075
	GW CBCU Nebraska	1,654
Prairie Dog Subbasin	GW CBCU Colorado	0
	GW CBCU Kansas	3,668
	GW CBCU Nebraska	0
Mainstem Subbasin	GW CBCU Colorado	(5,115)
	GW CBCU Kansas Above Guide Rock	(769)
	GW CBCU Kansas Below Guide Rock	51
	GW CBCU Nebraska Above Guide Rock	52,721
	GW CBCU Nebraska Below Guide Rock	1,769

Import Water Data*		
North Fork Subbasin	Imported Water Nebraska	0
Arikaree Subbasin	Imported Water Nebraska	0
Buffalo Subbasin	Imported Water Nebraska	0
Rock Subbasin	Imported Water Nebraska	0
South Fork Subbasin	Imported Water Nebraska	0
Frenchman Subbasin	Imported Water Nebraska	0
Driftwood Subbasin	Imported Water Nebraska	0
Red Willow Subbasin	Imported Water Nebraska	49
Medicine Creek Subbasin	Imported Water Nebraska	10,592
Beaver Subbasin	Imported Water Nebraska	0
Sappa Subbasin	Imported Water Nebraska	27
Prairie Dog Subbasin	Imported Water Nebraska	0
Mainstem Subbasin	Imported Water Nebraska Above Guide Rock	8,314
	Imported Water Nebraska Below Guide Rock	(20)
	Total	18,962

* The initial heads for the RRCA Groundwater Model 2020 Update are the ending heads from a groundwater model generated using corrected precipitation data rather than the RRCA Groundwater Model 2019 Update used for approved 2019 accounting. After the 2019 Update was approved, PRISM corrections for precipitation values for May-September 2019 were obtained. PRISM corrected their daily and monthly grids on August 3, 2020, after finding that some stations, including those affecting the RRCA model domain, were mis-located. The precipitation corrected 2019 groundwater model run used to generate the 2020 initial heads included 71,452 acre-feet or 2.3% additional recharge from precipitation. The updated 2020 initial heads will serve as the basis for future RRCA Groundwater Model updates.

Calendar Year		2020
SW Pumping Data		
North Fork Subbasin	SW Diversions - Irrigation -Non-Federal Canals- Colorado	301
	SW Diversions - Irrigation - Small Pumps - Colorado	24
	SW Diversions - M&I - Colorado	0
Arikaree Subbasin	SW Diversions - Irrigation -Non-Federal Canals- Colorado	0
	SW Diversions - Irrigation - Small Pumps - Colorado	0
	SW Diversions - M&I - Colorado	0
	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	0
	SW Diversions - M&I - Kansas	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	0
	SW Diversions - Irrigation - Small Pumps - Nebraska	0
	SW Diversions - M&I - Nebraska	0
Buffalo Subbasin	SW Diversions - Irrigation -Non-Federal Canals- Colorado	0
	SW Diversions - Irrigation - Small Pumps - Colorado	0
	SW Diversions - M&I - Colorado	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	92
	SW Diversions - Irrigation - Small Pumps - Nebraska	4
	SW Diversions - M&I - Nebraska	0
Rock Subbasin	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	0
	SW Diversions - Irrigation - Small Pumps - Nebraska	0
	SW Diversions - M&I - Nebraska	0
South Fork Subbasin	SW Diversions - Irrigation -Non-Federal Canals- Colorado	0
	SW Diversions - Irrigation - Small Pumps - Colorado	0
	SW Diversions - M&I - Colorado	0
	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	0
	SW Diversions - M&I - Kansas	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	0
	SW Diversions - Irrigation - Small Pumps - Nebraska	0
	SW Diversions - M&I - Nebraska	0
Frenchman Subbasin	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	0
	SW Diversions - Irrigation - Small Pumps - Nebraska	0
	SW Diversions - M&I - Nebraska	0
Driftwood Subbasin	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	0
	SW Diversions - M&I - Kansas	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	0
	SW Diversions - Irrigation - Small Pumps - Nebraska	0
	SW Diversions - M&I - Nebraska	0
Red Willow Subbasin	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	0
	SW Diversions - Irrigation - Small Pumps - Nebraska	0
	SW Diversions - M&I - Nebraska	0
Medicine Creek Subbasin	SW Diversions - Irrigation - Non-Federal Canals - Nebraska - Above Gage	0
	SW Diversions - Irrigation - Small Pumps - Nebraska - Above Gage	57
	SW Diversions - M&I - Nebraska - Above Gage	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska -Below Gage	0
	SW Diversions - Irrigation - Small Pumps -Nebraska - Below Gage	229
	SW Diversions - M&I - Nebraska - Below Gage	0

RRCA Engineering Committee Report for 2020

Calendar Year		2020
SW Pumping Data		-
Beaver Subbasin	SW Diversions - Irrigation -Non-Federal Canals- Colorado	0
	SW Diversions - Irrigation - Small Pumps - Colorado	0
	SW Diversions - M&I - Colorado	0
	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	23
	SW Diversions - M&I - Kansas	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska - Above Gage	0
	SW Diversions - Irrigation - Small Pumps - Nebraska - Above Gage	0
	SW Diversions - M&I - Nebraska - Above Gage	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska -Below Gage	0
	SW Diversions - Irrigation - Small Pumps -Nebraska - Below Gage	0
	SW Diversions - M&I - Nebraska - Below Gage	0
Sappa Subbasin	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	0
	SW Diversions - M&I - Kansas	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska - Above Gage	0
	SW Diversions - Irrigation - Small Pumps - Nebraska - Above Gage	0
	SW Diversions - M&I - Nebraska - Above Gage	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska -Below Gage	0
	SW Diversions - Irrigation - Small Pumps -Nebraska - Below Gage	0
	SW Diversions - M&I - Nebraska - Below Gage	0
Prairie Dog Subbasin	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	1,392
	SW Diversions - M&I - Kansas	361
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska -Below Gage	0
	SW Diversions - Irrigation - Small Pumps -Nebraska - Below Gage	172
	SW Diversions - M&I - Nebraska - Below Gage	0
Mainstem Subbasin	SW Diversions - Irrigation - Non-Federal Canals- Kansas	0
	SW Diversions - Irrigation - Small Pumps - Kansas	753
	SW Diversions - M&I - Kansas	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska	1,752
	SW Diversions - Irrigation - Small Pumps - Nebraska	1,453
	SW Diversions - M&I - Nebraska	0
	SW Diversions - Irrigation - Non-Federal Canals - Nebraska Below Guide Rock	0
	SW Diversions - Irrigation - Small Pumps - Nebraska Below Guide Rock	552
	SW Diversions - M&I - Nebraska - Below Guide Rock	0

Non-Federal SW Consumptive Use

% Non-Federal Canal Diversion Consumed	60%
% Small Surface Water Pumps Consumed	75%
% Municipal And Industrial SW Consumed	50%

RRCA Engineering Committee Report for 2020

Calendar Year		2020
Non-Federal Reservoir Evapo	oration Data	
North Fork Subbasin	Non-Federal Reservoir Evaporation - Colorado	40
Arikaree Subbasin	Non-Federal Reservoir Evaporation - Colorado	0
	Non-Federal Reservoir Evaporation - Kansas	19
	Non-Federal Reservoir Evaporation - Nebraska	0
Buffalo Subbasin	Non-Federal Reservoir Evaporation - Colorado	0
	Non-Federal Reservoir Evaporation - Nebraska	13
Rock Subbasin	Non-Federal Reservoir Evaporation - Nebraska	152
South Fork Subbasin	Non-Federal Reservoir Evaporation - Colorado	0
	Non-Federal Reservoir Evaporation - Kansas	165
	Non-Federal Reservoir Evaporation - Nebraska	0
Frenchman Subbasin	Non-Federal Reservoir Evaporation - Nebraska	124
Driftwood Subbasin	Non-Federal Reservoir Evaporation - Kansas	17
	Non-Federal Reservoir Evaporation - Nebraska	0
Red Willow Subbasin	Non-Federal Reservoir Evaporation - Nebraska	258
Medicine Creek Subbasin	Non-Federal Reservoir Evaporation - Nebraska - Above Gage	304
	Non-Federal Reservoir Evaporation - Nebraska - Below Gage	3
Beaver Subbasin	Non-Federal Reservoir Evaporation - Colorado	0
	Non-Federal Reservoir Evaporation - Kansas	391
	Non-Federal Reservoir Evaporation - Nebraska - Above Gage	169
	Non-Federal Reservoir Evaporation - Nebraska - Below Gage	0
Sappa Subbasin	Non-Federal Reservoir Evaporation - Kansas	420
	Non-Federal Reservoir Evaporation - Nebraska - Above Gage	79
	Non-Federal Reservoir Evaporation - Nebraska - Below Gage	5
Prairie Dog Subbasin	Non-Federal Reservoir Evaporation - Kansas	333
	Non-Federal Reservoir Evaporation - Nebraska	26
Mainstem Subbasin	Non-Federal Reservoir Evaporation - Kansas	119
	Non-Federal Reservoir Evaporation - Nebraska - Above Guide Rock Gage - Whole	
	Basin Value:	1,478
	Non-Federal Reservoir Evaporation - Nebraska - Below Guide Rock Gage - Whole	
	Basin Value:	84

Stream Gage Data		
North Fork Subbasin	North Fork Republican River At Colorado-Nebraska State Line	22,984
Arikaree Subbasin	Arikaree River At Haigler	1,657
Buffalo Subbasin	Buffalo Creek Near Haigler	2,143
Rock Subbasin	Rock Creek At Parks	4,049
South Fork Subbasin	South Fork Republican River Near Benkelman	7,229
Frenchman Subbasin	Frenchman Creek At Culbertson	19,122
Driftwood Subbasin	Driftwood Creek Near McCook	2,492
Red Willow Subbasin	Red Willow Creek Near Red Willow	4,284
Medicine Creek Subbasin	Medicine Creek Below Harry Strunk	39,930
Beaver Subbasin	Beaver Creek Near Beaver City	788
Sappa Subbasin	Sappa Creek Near Stamford	16,223
Prairie Dog Subbasin	Prairie Dog Creek Near Woodruff	8,282
Mainstem Subbasin	Republican River At Guide Rock	202,416
	Republican River Near Hardy	251,239

Hardy Gage Data	USGS Gage 06853500 Republican River Near Hardy, NE	
Mainstem Subbasin	January	55,339
	February	33,332
	March	33,775
	April	23,421
	Мау	31,732
	June	10,810
	July	30,811
	August	8,337
	September	3,488
	October	4,298
	November	7,632
	December	8,265
	ANNUAL	251,239

Calendar Year		2020
Reservoir Data		
South Fork Subbasin	Bonny Reservoir Evaporation	0
	Bonny Reservoir Change In Storage	0
Frenchman Subbasin	Enders Reservoir Evaporation	2,037
	Enders Reservoir Change In Storage	(1,148)
Red Willow Subbasin	Hugh Butler Lake Evaporation	3,032
	Hugh Butler Lake Change In Storage	(4,190)
Medicine Creek Subbasin	Harry Strunk Lake Evaporation	2,924
	Harry Strunk Lake Change In Storage	(9,530)
Prairie Dog Subbasin	Keith Sebelius Lake Evaporation	4,594
	Keith Sebelius Lake Change In Storage	(4,632)
Mainstem Subbasin	Swanson Lake Evaporation	10,172
	Swanson Lake Change In Storage	(4,786)
	Harlan County Evaporation Subject to Nebraska/Kansas Split	26,419
	Harlan County Evaporation Charged to Kansas	0
	Harlan County Change In Storage	(50,098)
	Lovewell Reservoir Ev charged to the Republican River	1,385

Canal Data		
North Fork Subbasin	Haigler Canal Diversions - Colorado	0
	Haigler Canal Diversions - Nebraska	5,288
	Haigler Canal Diversions	5,288
South Fork Subbasin	Hale Ditch Diversions	0
Frenchman Subbasin	Champion Canal Diversions	θ
	Riverside Canal Diversions	0
	Culbertson Canal Diversions	6,722
	Culbertson Canal Extension Diversions	0
	Culbertson Canal % Return Flow	82%
	Culbertson Canal Extension % Return Flow	100%
Driftwood Subbasin	Meeker-Driftwood Canal Diversions	19,398
	Meeker-Driftwood Canal % Return Flow	61.6%
Red Willow Subbasin	Red Willow Canal Diversions	5,226
	Red Willow Canal % Return Flow	66%
Prairie Dog Subbasin	Almena Canal Diversions	3,076
-	Almena Canal % Return Flow	61.3%
Mainstem Subbasin	Bartley Canal Diversion	7,388
	Bartley Canal % Return Flow	66%
	Cambridge Canal Diversion	26,714
	Cambridge Canal % Return Flow	59.0%
	Naponee Canal Diversion	1,593
	Naponee Canal % Return Flow	74%
	Franklin Canal Diversion	22,053
	Franklin Canal % Return Flow	71%
	Franklin Pump Canal Diversions	1,190
	Franklin Pump Canal % Return Flow	63%
	Superior Canal Diversions	10,070
	Superior Canal % Return Flow	80%
	Courtland Canal Diversions At Headgate	44,380
	Diversions to Nebraska Courtland	499
	Nebraska Courtland % Return Flow	31%
	Courtland Canal, Loss in NE assigned to upper Courtland KS	3 847
	Courtland Canal, Loss in NE assigned to delivery to Lovewell	4.278
	Courtland Canal At Kansas-Nebraska State Line	35.756
	Courtland Canal Diversions to the Upper Courtland District	18,180
	Courtland Canal Above Lovewell % Return Flow	60.7%
	Courtland Canal, Loss assigned to deliveries of water to Lovewell, Stateline to	
	Lovewell	3,950
	Courtland Canal Deliveries To Lovewell Reservoir	17,473
	Diversions of Republican River water from Lovewell Reservoir to the Courtland Canal	
	below Lovewell	14,183
	Courtland Canal Below Lovewell % Return Flow	51.2%
	To allocate Harlan County evaporation:	
	Kansas Bostwick Diversions During Irrigation Season (actual. or 3-vear average)	32.828
	Nebraska Bostwick Diversions During Irrigation Season (actual or 3-year average)	32,809

Accounting Tables

2020	Virgin Water	Computed		Alloc	ations		Computed I	Beneficial Consu	Imptive Use
Basin	Supply	Water Supply	Colorado	Kansas	Nebraska	Unallocated	Colorado	Kansas	Nebraska
North Fork	40,930	40,930	9,170	0	10,070	21,690	17,630	0	4,420
Arikaree	3,480	3,480	2,730	180	580	(10)	1,650	100	70
Buffalo	6,290	6,290	0	0	2,080	4,210	480	0	3,670
Rock	9,480	9,480	0	0	3,790	5,690	90	0	5,340
South Fork	22,640	22,640	10,050	9,100	320	3,170	11,040	3,650	720
Frenchman	102,180	103,330	0	0	55,380	47,950	1,140	0	82,130
Driftwood	450	450	0	30	70	350	0	20	810
Red Willow	16,970	21,160	0	0	4,060	17,100	0	0	9,490
Medicine	42,950	52,480	0	0	4,780	47,700	0	0	20,390
Beaver	11,260	11,260	2,250	4,370	4,570	70	0	6,430	4,040
Sappa	19,630	19,630	0	8,070	8,070	3,490	0	2,490	1,740
Prairie Dog	14,660	19,290	0	8,820	1,470	9,000	0	11,010	160
Main Stem	213,600	264,600	0	135,210	129,390	0	(5,120)	30,110	119,420
Total All Basins	504,520	575,020	24,200	165,780	224,630	160,410	26,910	53,810	252,400
Main Stem Including Unallocated		425,010	0	217,180	207,830				
Total	504,520	575,020	24,200	247,750	303,070	0	26,910	53,810	252,400

Table 1: Annual Virgin and Computed Water Supply, Allocations, and Computed Beneficial Consumptive Uses by State, Main Stem, and Sub-Basin

Table 2: Original Compact Virgin	Water Supply and Allocations
----------------------------------	------------------------------

	Virgin Water	Colorado	% of Basin	Kansas	% of Basin	Nebraska	% of Basin		% of Basin
Basin	Supply	Allocation	Supply	Allocation	Supply	Allocation	Supply	Unallocated	Supply
North Fork	44,700	10,000	22.4%			11,000	24.6%	23,700	53.0%
Arikaree	19,610	15,400	78.5%	1,000	5.1%	3,300	16.8%	(90)	-0.4%
Buffalo	7,890					2,600	33.0%	5,290	67.0%
Rock	11,000					4,400	40.0%	6,600	60.0%
South Fork	57,200	25,400	44.4%	23,000	40.2%	800	1.4%	8,000	14.0%
Frenchman	98,500					52,800	53.6%	45,700	46.4%
Driftwood	7,300			500	6.9%	1,200	16.4%	5,600	76.7%
Red Willow	21,900					4,200	19.2%	17,700	80.8%
Medicine	50,800					4,600	9.1%	46,200	90.9%
Beaver	16,500	3,300	20.0%	6,400	38.8%	6,700	40.6%	100	0.6%
Sappa	21,400			8,800	41.1%	8,800	41.1%	3,800	17.8%
Prairie Dog	27,600			12,600	45.7%	2,100	7.6%	12,900	46.7%
Tributaries Sub-Total	384,000							175,500	
Main Stem	94,500								
Main Stem + Unallocated	270,000			138,000	51.1%	132,000	48.9%		
Total	478,900	54,100		190,300		234,500			

Table 3A: Table to Be	e Used to Calculate Color	ado's Five-Year Running	Average Allocation and C	omputed Beneficial

	Col. 1	Col. 2	Col. 3	Col. 4
				Difference between
				Allocation and the
				Computed Beneficial
				Consumptive Use
				offset by Imported
				Water Supply Credit
		Computed Beneficial	Imported Water Supply	and CORWS Credit
Year	Allocation	Consumptive	Credit and CORWS	Col 1 – (Col 2- Col 3)
2016	25,190	33,930	10,130	1,390
2017	22,960	31,810	11,330	2,480
2018	25,630	35,130	13,578	4,078
2019	22,710	32,740	8,905	(1,125)
2020	24,200	26,910	6,218	3,508
Aug 2010 2020				

Table 3B: Table to Be Used to Calculate Kansas's Five-Year Running Average Allocation and Computed Beneficial

	Col. 1	Col. 2	Col. 3	Col. 4
				Difference between
				Allocation and the
				Computed Beneficial
				Consumptive Use
				offset by Imported
		Computed Beneficial	Imported Water Supply	Water Supply Credit
Year	Allocation	Consumptive	Credit	Col 1 – (Col 2- Col 3)
2016	156,760	51,320	NA	105,440
2017	177,230	62,040	NA	115,190
2018	179,780	51,450	NA	128,330
2019	333,300	47,910	NA	285,390
2020	247,750	53,810	NA	193,940
Avg 2016-2020	218,960	53,310	NA	165,660

Table 3C: Table to Be Used to Calculate Nebraska's Five-Year Running Average Allocation and Computed Beneficial

	Col. 1	Col. 2	Col. 3	Col. 4
				Difference between
				Allocation and the
				Computed Beneficial
				Consumptive Use
				offset by Imported
				Water Supply Credit
		Computed Beneficial	Imported Water Supply	and NERWS Credit
Year	Allocation	Consumptive	Credit and NERWS	Col 1 – (Col 2- Col 3)
2016	217,880	256,120	61,816	23,576
2017	238,540	242,140	39,439	35,839
2018	241,680	266,080	25,943	1,543
2019	389,300	262,870	26,541	152,971
2020	303,070	252,400	18,995	69,665

Table 4A: Colorado Compliance with the Sub-basin Non-impairment Requirement

Table 4A is left unpopulated pursuant to the August 24, 2016 "RESOLUTION BY THE REPUBLICAN RIVER COMPACT ADMINISTRATION APPROVING OPERATION AND ACCOUNTING FOR THE COLORADO COMPACT COMPLIANCE PIPELINE AND COLORADO'S COMPLIANCE EFFORTS IN THE SOUTH FORK REPUBLICAN RIVER BASIN", paragraph E.

2020

	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6
Sub-basin	Colorado Sub-basin Allocation (Five- year Running Average)	Unallocated Supply (Five-year Running Average)	Credits from Imported Water Supply and CORWS Credit (Five-year Running Average)	Total Available Supply (Five-year Running Average)	Colorado Computed Beneficial Consumptive Use (Five-year Running Average)	Difference Between Available Supply and Computed Beneficial Consumptive Use (Five-year Running Average)
North Fork						
Arikaree						
South Fork						
Beaver						

Table 4B: Kansas's Sub-Basin Non-impairment Compliance

2020

	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7
							Difference Between
					Total Available		Available Supply and
	Kansas Sub-basin		Unused Allocation	Credits from Imported	Supply	Kansas Computed	Computed Beneficial
	Allocation (Five-	Unallocated Supply	from Colorado (Five	Water Supply (Five-	Col 1 + Col 2 + Col	Beneficial	Consumptive Use
	year Running	(Five-year Running	Year Running	year Running	3 + Col 4 (Five-year	Consumptive Use (Five	Col 5 - Col 6 (Five-year
Sub-basin	Average)	Average)	Average)	Average)	Running Average)	year Running Average)	Running Average)
Arikaree	172	(10)	446	N/A	608	156	452
South Fork	9,130	3,180	0	N/A	12,310	4,886	7,424
Driftwood	90	1,002	0	N/A	1,092	12	1,080
Beaver	4,682	70	2,414	N/A	7,166	6,658	508
Sappa	7,164	3,094	0	N/A	10,258	2,598	7,660
Prairie Dog	7,960	8,130	0	N/A	16,090	10,772	5,318

Table 5A: Colorado's Compliance During Water-Short Year Administration

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7
							Difference between
							Allocation and the
							Compuated Beneficial
							Consumptive Use offset
					Computed Beneficial		by Imported Water
	Is the year Water		Beaver Creek	Allocation - Beaver	Consumptive (excluding	Imported Water Supply	Supply Credit and
	Short Pursuant to		Reduction Pursuant	Creek Reduction (Col. 2 -	the Beaver Creek Sub-	Credit - IWS Beaver	CORWS Credit
Year	III.J?* (Yes or No)	Statewide Allocation	to Table 5F	Col.3)	basin)	Creek + CORWS Credit	(Col. 4 - Col. 5 + Col. 6)
2016	Yes	25,190	1,650	23,540	33,930	10,130	(260)
2017	Yes	22,960	0	22,960	31,810	11,330	2,480
2018	No	25,630	1,852	23,778	35,130	13,578	2,226
2019	Yes	22,710	0	22,710	32,740	8,905	(1,125)
2020	No	24,200	0	24,200	26,910	6,218	3,508
Avg 2016-2020	Yes	24,140	700	23,440	32,100	10,030	1,370

Table 5F: Colorado's Beaver Creek Reduction During Water-Short Years

Water Short Year (WSY) Pursuant to III.J	Beaver Creek Allocation	Reduction = Average of last five WSY Beaver Creek Allocations
	Col. 1	Col. 2
2002	770	N/A
2003	260	N/A
2004	360	N/A
2005	910	N/A
2006	1,420	N/A
2007	2,320	744
2013	1,130	1,054
2014	1,250	1,228
2015	2,130	1,406
2016	2,430	1,650
2018	2,430	1,852

Table 5B: Kansas's Compliance During	Water-Short	ear Administration
Kansas		

Year		All	location	Computed Beneficial Consumptive Use	Imported Water Supply Credit	Difference Between Allocation and the Computed Beneficial Consumpitve Use offset by Imported Water Supply Credit	
Column	1	2	3	4	5	6	7
		Kansas' Share	Kansas' Share of the	Total			
		of Unallocated	Unused Colorado	Col 1 + Col 2 +			
	Sum Sub-basins	Supply	Allocation	Col 3			Col 4 - (Col 5 - Col 6)
2019	38,550	11,615	1,579	51,744	26,350	N/A	25,394
2020	30,570	8,212	1,702	40,483	23,700	N/A	16,783
Avg 2019-2020	34,560	9,913	1,640	46,114	25,025	N/A	21,089

Table 5E: Nebraska's Tributary Compliance During Water-Short Year Administration

		Allocation	Computed	Imported		
		Share of		Beneficial	Water Supply	Allocation -
		Unallocated		Consumptive	Credit and	(CBCU - IWS-
Year	Sub-Basin Total	Supply	Total	Use	AWS	AWS)
2018	97,670	71,863	169,533	137,900	11,446	43,079
2019	107,230	86,685	193,915	137,820	11,441	67,536
2020	95,240	78,440	173,680	132,980	10,716	51,416
Avg 2019-2020	101,235	82,563	183,798	135,400	11,079	59,476

Table 5C: Nebraska's Compliance During Water-Short Year Administration

Year	Allocation				Computed Beneficial Consumptive Use			Imported Water Supply Credit and NERWS Credit	Difference Between Allocation and Computed Beneficial Consumptive Use offset by Imported Water Supply Credit Above Guide Rock and NERWS Credit
Column	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9
	State-Wide Allocation	Allocation Below Guide Rock	Allocation Above Guide Rock	Nebraska's Share of Unused Colorado Allocation	State-Wide CBCU	CBCU Below Guide Rock	CBCU Above Guide Rock	Credits Above Guide Rock	Col 3 + Col 4 - (Col 7 - Col 8)
2019	389,300	56,294	333,006	1,511	262,870	1,780	261,090	26,541	99,968
2020	303,070	17,777	285,293	1,628	252,400	2,266	250,134	18,995	55,783
Avg 2019-2020	346,190	37,040	309,150	1,570	257,640	2,020	255,610	22,770	77,880

Table 5D: Nebraska's Compliance Under a Alternative Water-Short Year Administration Plan

Year	Allocation				Computed Beneficial Consumptive Use			Imported Water	Difference Between
Column	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9
	State-Wide Allocation	Allocation Below Guide Rock	Allocation Above Guide Rock	Share of Unused Colorado	State-Wide CBCU	CBCU Below Guide Rock	CBCU Above Guide Rock	Credits Above Guide Rock	Col 3 + Col 4 - (Col 7 - Col 8)
2018	241,680	19,786	221,894	1,340	266,080	3,314	262,766	25,943	(13,590)
2019	389,300	56,294	333,006	1,511	262,870	1,780	261,090	26,541	99,968
2020	303,070	17,777	285,293	1,628	252,400	2,266	250,134	18,995	55,783
Avg 2018-2020	311,350	31,290	280,060	1,490	260,450	2,450	258,000	23,830	47,390
Attachments

Attachment 1: Sub-basin Flood Flow Thresholds

	Sub-basin Flood Flow Threshold
Sub-basin	Acre-feet per Year ³
Arikaree River	16,400
North Fork of Republican River	33,900
Buffalo Creek	9,800
Rock Creek	9,800
South Fork of Republican River	30,400
Frenchman Creek	51,900
Driftwood Creek	9,400
Red Willow Creek	15,100
Medicine Creek	55,100
Beaver Creek	13,900
Sappa Creek	26,900
Prairie Dog	15,700

³ Flows considered to be Flood Flows are flows in excess of the 94% flow based on a flood frequency analysis for the years 1971-2000. The Gaged Flows are measured after depletions by Beneficial Consumptive Use and change in reservoir storage.

Attachment 2

Attachment 6: Computing Water Supplies and Consumptive Use Above Guide Rock

Note: At its Annual Meeting on August 21, 2020, the RRCA agreed that the Accounting Procedures (Rev. May 25, 2017) do not properly implement the Flood Flows provisions at the Hardy gage with respect to the calculation of Computed Water Supply above and below Guide Rock. The current implementation could impact Nebraska's Table 5C compliance test, specificially the Allocation above Guide Rock. Nebraska and Kansas each offered proposals to resolve the issue but could not reach agreement on a solution. Due to the infrequent occurrence of Flood Flows, the RRCA deferred resolution of the matter to a future date necessiated by and preceding impact to Nebraska's Table 5C compliance. The states wish to acknowledge and memorialize the issue to encourage work towards its resolution. As it stands, Attachment 6 calculates Virgin Water Supply Guide Rock to Hardy which would reduce Virgin Water Supply by the relevant Flood Flows as described in Section II. Definitions and Section III. Basic Formulas.

								Total			Total			Mainstem	NE MS	KS MS	Nebraska	Kansas
			Superior					Bostwick	NE CBCU	KS CBCU	CBCU	Gain	VWS	VWS	Allocation	Allocation	Guide	Guide
	Total		Courtland	Courtland	Superior	Courtland	Superior	Returns	Below	Below	Below	Guide	Guide	Above	Above	Above	Rock to	Rock to
	Mainstem	Hardy	Diversion	Canal	Canal	Canal	Canal	Below	Guide	Ruide	Guide	Rock to	Rock to	Guide	Guide	Guide	Hardy	Hardy
Year	CWS	Gage	Dam	Diversions	Diversion	Returns	Returns	Guide Rock	Rock	Rock	Rock	Hardy	Hardy	Rock	Rock	Rock	Allocation	Allocation
2020	264,600	251,239	202,416	55,120	10,070	7,327	8,024	15,352	2,266	616	2,882	33,471	36,353	228,247	111,613	116,634	17,777	18,577

COURTLAND CANAL	
	2020
Return Flow From Courtland Canal To Republican River Above Lovewell From Kansas	536
Return Flow From Courtland Canal To Republican River Above Hardy From Nebraska	6,791
Courtland Canal Diversions At Headgate	44,380
Courtland Canal At Kansas-Nebraska State Line	35,756
NE Courtland Canal CBCU (includes transportation loss)	342
Superior Canal CBCU	2,046

NEBRASKA					
	2020				
SW Diversions - Irrigation - Small Pumps - Nebraska Below Guide Rock	552				
SW Diversions - M&I - Nebraska - Below Guide Rock					
SW Non-Federal Reservoir Evaporation - Below Guide Rock	84				
SW Return - Irrigation	138				
SW Return - M&I	0				
GW CBCU Nebraska Below Guide Rock	1,769				

KANSAS							
	2020						
SW CBCU - Irrigation - Small Pumps	565						
SW CBCU - M&I	0						
GW CBCU Kansas Below Guide Rock	51						

2020

Attachment 7: Calculations of Return Flows from Bureau of Reclamation Canals

Col 1	Col 2	2 Col 3	B Col 4	Col 5	Col 6	Col 7	Col 8	Col 9	Col 10	Col 11	Col 12
Canal	Canal	Spill to	Net	Field	Canal Loss	Average	Field Loss	Total Loss	Percent Field	Total return	Return as
	Diversion	waste-way	Diversion	Deliveries		Field Loss		from District	and Canal	to Stream	Percent of
						Factor			Loss That	and Field	Canal
									the Stream		Diversion
Name Canal	Headnate	Sum of		Sum of		1 -Weighted			Estimated		
	Diversion	measured	012-0013	Deliveries to	0014 - 0015				Percent Loss*	Col 10 +	00111/0012
	Diversion	spills to river		the field		Efficiency of		0010	I CIGCIL LOSS	Col 3	
		opilio to inter				Application					
Σ Irrigation Season	Т					System for					
Σ Non- Irrigation Season						the District*					
Culbortoon	5,380	89	5,291	257	5,034	30%	77	5,111	82%	4,280	80%
Culbertson	1,342	0	1,342	0	1,342	30%	0	1,342	92%	1,235	92.0%
Culbertson Extension	0	0	0	0	0	30%	0	0	82%	0	100%
	0	0	0	0	0	30%	0	0	92%	0	100.0%
Meeker - Driftwood	19,398	1,817	17,581	7,463	10,118	30%	2,239	12,357	82%	11,950	61.6%
	0	0	0	0	0	30%	0	0	92%	0	100.0%
Red Willow	5,226	0	5,226	1,423	3,803	30%	427	4,230	82%	3,469	66.4%
	0	0	0	0	0	30%	0	0	92%	0	100.0%
Bartley	7,388	1,397	5,991	2,487	3,504	30%	/46	4,250	82%	4,882	66.1%
	0	0	0	0	0	30%	0	0	92%	15 047	100.0%
Cambridge	20,599	1,175	25,424	11,107	14,317	30%	3,332	17,649	82%	15,647	58.8%
	1 503	342	97	356	97	30%	125	97	92%	1 178	93.3%
Naponee	1,555	042	1,231	0	033	35%	120	1,020	92%	1,170	100.0%
	22 053	3 211	18 842	5 770	13 072	35%	2 020	15 092	82%	15.586	70.7%
Franklin	0	0,211	0	0	0	35%	0	0	92%	0	100.0%
	1,190	111	1,079	452	627	35%	158	785	82%	755	63.4%
Franklin Pump	0	0	0	0	0	35%	0	0	92%	0	100.0%
Almena	3,076	0	3,076	1,109	1,967	30%	333	2,300	82%	1,886	61.3%
Superior	10,070	3,691	6,379	1,586	4,793	31%	492	5,285	82%	8,024	79.7%
Superior	0	0	0	0	0	31%	0	0	92%	0	100.0%
Nebraska Courtland	499	0	499	400	99	23%	92	191	82%	157	31.4%
Courtland Canal Above											
Lovewell (KS)	18,181	1,532	16,649	6,568	10,081	23%	1,511	11,592	82%	11,037	60.7%
Courtland Canal Below											
Lovewell	24,486	2,899	21,587	12,764	8,823	23%	2,936	11,759	82%	12,541	51.2%

* The average field efficiencies for each district and percent loss that returns to the stream may be reviewed and, if necessary, changed by the RRCA to improve the accuracy of the estimates.

				•		CCV a	nd RCCV Tra	acking ^a	•	•						APV and RV	VS		RCCV Calc
	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12		Col	orado		Ne	braska	
Year	Start of Year RCCV	RCCV Adjustme nt	ccv	CCV Inflow Into HCL	RCCV Inflow Into HCL	Total CCV and RCCV Inflow Into HCL	Total CCV and RCCV Available for Release	CCV Released from HCL as Flow	CCV Released from HCL as Evaporation	CCV Retained in HCL (at End of Year)	CWSA	End of Year RCCV	Au Pumj Volu (AP	g. bing me V)	Resolution Water Supply Credit (CORWS)	Aug. Pumping Volume (APV) Rock Creek That Passed Sub-basin Gage in the Current Year	Aug. Pumping Volume (APV) N- CORPE That Passed Sub-basin Gage in the Current Year	Resolution Water Supply Credit (NERWS)	Extra CCV Efforts Above CCV (Use with RCCV Calc)
	=Col 12 of previous year	b	с			= Col. 4 + Col. 5	=Col. 6 + Col. 10 of previous year			= Col. 7 – (Col. 8 + Col. 9)	=Col. 10 – Col. 10 of previous year	= Col. 1 – Col. 2 + Col. 3 - Col. 6 ^d							
2007	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2008	0	0	0	0 0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2009	0	0	0	0 0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2010	0	0	0	0 0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2011	0	0	0	0 0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2012	0	0	0	0 0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2013	0	0	0	0 0	0	0	0	0	0	0	0	0		0	0	15,766	0	15,766	0
2014	0	0	0	0 0	0	0	0	0	0	0	0	0	1	,448	7,448	19,397	42,758	62,155	0
2015	0	0	0	8,332	0	8,332	8,332	0	0	8,332	8,332	0	1(,760	10,760	1,098	25,932	18,698	8332
2016	0	0	41,935	24,752	0	24,752	33,084	5,084	4,321	23,679	15,347	9,300	10	,130	10,130	499	22,803	41,935	449
2017	9,300	0	20,000	20,000	0	20,000	43,679	20,000	2,241	21,438	-2,241	9,300	1'	,330	11,330	4,563	11,106	20,000	0
2018	9,300	0	0	0 0	0	0	21,438	0	1,339	20,099	-1,339	9,300	13	,578	13,578	0	0	0	0
2019	9,300	0	0	0 0	0	0	20,099	0	2,340	17,759	-2,340	9,300	8	,905	8,905	0	0	0	0
2020	9,300	1,860	0	0	0	0	17,759	0	3,889	13,870	-3,889	7,440	6	,218	6,218	0	0	0	0

Attachment 8: Calculation of the Computed Water Supply Adjustment and Remaining Compact Compliance Volume for Implementation of 2016 RRCA Resolution

a. Calculations for RCCV, CWSA, & RWS don't start until Oct. 1, 2015

b. See Provision 10 of the RRCA Resolution signed August 24, 2016, titled "Resolution Approving Long-Term Agreement Related to the Operation of Harlan County Lake for Compact Call Years" for the terms of assigning RCCV Adjustment. The RCCV Adjustment for each year is equal to 20% of the unadjusted portion of the RCCV, if it is a non-Compact Call Year, plus any remaining volumetric reductions from the previous four years.

c. In years when the contributions from Nebraska's water management activities, consistent with the 2016 CCY HCL Operations Resolution, are greater than CCV and the NERWS is equal to the greater contribution volume, CCV in Column 3 should also be set equal to the contribution.

d. The formula for calculation of RCCV is based on calendar year operations and will vary when operations occur in a different calendar year than NERWS Credit is applied.

Flood Flow Calculations Based on Accounting Procedures III.B.1 and Attachment 1.

Hard	y Gage Moi	nthly Data ((acre-feet)				
	2016	2017	2018	2019	2020		
January	5,429	11,315	4,619	13,289	55,339		
February	6,532	6,369	5,521	6,875	33,332		
March	6,415	6,420	7,386	61,131	33,775		
April	6,625	6,933	3,658	21,669	23,421		
Мау	13,501	33,286	2,309	66,000	31,732		
June	5,901	11,956	7,601	69,761	10,810		
July	4,844	24,712	3,805	118,015	30,811		
August	6,153	5,874	5,065	82,834	8,337		
September	9,868	3,532	23,848	30,188	3,488		
October	5,278	8,752	17,603	21,527	4,298		
November	5,286	2,399	9,231	59,330	7,632		
December	4,685	5,575	20,216	75,757	8,265		
ANNUAL	80,515	127,122	110,862	626,376	251,239		
Over 400K	0	0	0	226,376	0		

5-month C	5-month Consecutive Period Flows (acre-feet)										
	2016	2017	2018	2019	2020						
Jan-May	38,501	64,322	23,494	168,964	177,598						
Feb-Jun	38,973	64,964	26,475	225,436	133,069						
Mar-Jul	37,285	83,307	24,760	336,576	130,548						
Apr-Aug	37,023	82,760	22,438	358,279	105,110						
May-Sep	40,266	79,359	42,628	366,798	85,177						
Jun-Oct	32,043	54,825	57,922	322,325	57,743						
Jul-Nov	31,428	45,268	59,552	311,894	54,566						
Aug-Dec	31,269	26,132	75,962	269,636	32,020						

2-month C	Consecutive	Period Flo	ows (acre-f	eet)	
	2016	2017	2018	2019	2020
Jan-Feb	11,960	17,683	10,140	20,164	88,671
Feb-Mar	12,946	12,789	12,907	68,006	67,107
Mar-Apr	13,039	13,353	11,045	82,800	57,195
Apr-May	20,126	40,219	5,967	87,669	55,152
May-Jun	19,402	45,242	9,910	135,761	42,541
Jun-Jul	10,744	36,668	11,406	187,776	41,621
Jul-Aug	10,996	30,586	8,870	200,849	39,148
Aug-Sep	16,020	9,406	28,912	113,022	11,825
Sep-Oct	15,146	12,283	41,451	51,715	7,786
Oct-Nov	10,564	11,151	26,834	80,857	11,930
Nov-Dec	9,971	7,974	29,447	135,087	15,898

F	inal Sub-ba	asin Flood	Flows		
	2016	2017	2018	2019	2020
North Fork Flood Flow	0	0	0	0	0
Arikaree Flood Flow	0	0	0	0	0
Buffalo Flood Flow	0	0	0	0	0
Rock Flood Flow	0	0	0	0	0
Southfork Flood Flow	0	0	0	0	0
Frenchman Flood Flow	0	0	0	0	0
Driftwood Flood Flow	0	0	0	0	0
Red Willow Flood Flow	0	0	0	0	0
Medicine Creek Flood Flow	0	0	0	0	0
Beaver Flood Flow	0	0	0	0	0
Sappa Flood Flow	0	0	0	15,988	0
Prairie Dog Flood Flow	0	0	0	25,260	0
Mainstem Flood Flow	0	0	0	185,128	0

Sub-basin F	lows Abov	e Attachme	ent 1 Flood	Flow Three	sholds
	2016	2017	2018	2019	2020
North Fork	0	0	0	0	0
Arikaree	0	0	0	0	0
Buffalo	0	0	0	0	0
Rock	0	0	0	0	0
South Fork	0	0	0	0	0
Frenchman	0	0	0	0	0
Driftwood	0	0	0	0	0
Red Willow	0	0	0	0	0
Medicine Creek	0	0	0	0	0
Beaver	0	0	0	0	0
Sappa	0	0	0	15,988	0
Prairie Dog	0	0	0	25,260	0
Sub-basin Sum	0	0	0	41,248	0

5-month Consecutive Period Test					
	2016	2017	2018	2019	2020
Jan-May	0	0	0	0	0
Feb-Jun	0	0	0	0	0
Mar-Jul	0	0	0	1	0
Apr-Aug	0	0	0	1	0
May-Sep	0	0	0	1	0
Jun-Oct	0	0	0	0	0
Jul-Nov	0	0	0	0	0
Aug-Dec	0	0	0	0	0
TOTAL	0	0	0	3	0

2-month Consecutive Period Test					
	2016	2017	2018	2019	2020
Jan-Feb	0	0	0	0	0
Feb-Mar	0	0	0	0	0
Mar-Apr	0	0	0	0	0
Apr-May	0	0	0	0	0
May-Jun	0	0	0	0	0
Jun-Jul	0	0	0	0	0
Jul-Aug	0	0	0	1	0
Aug-Sep	0	0	0	0	0
Sep-Oct	0	0	0	0	0
Oct-Nov	0	0	0	0	0
Nov-Dec	0	0	0	0	0
TOTAL	0	0	0	1	0

Combined Test					
	2016	2017	2018	2019	2020
FINAL TOTAL	0	0	0	4	0

RRCA Engineering Committee Report for 2020

Draft Edit to Accounting Procedures Proposed by Nebraska on 03/01/2021

1	
3	
4	
5	
6	
7 8	
9	Republican River Compact
10	Administration
11	
12	
13	
14	
15	
16	
17	ACCOUNTING PROCEDURES AND
18	REPORTING REQUIREMENTS
19	
20	
21	Revised August 21, 2020
22	

Republican	River	Compact	Administration
rep we me uni		e empare	

Accounting Procedures and	d Reporting Requirements
	Revised August 21, 2020

23		Table of Contents
24		
25	I.	Introduction
26		
27	II.	Definitions
28		
29	III.	Basic Formulas
30	A.	Calculation of Annual Virgin Water Supply
31		1. Sub-basin calculation
32		2. Main Stem Calculation
33		3. Imported Water Supply Credit Calculation
34		4. Augmentation Pumping Volume
35	В.	Calculation of Computed Water Supply13
36		1. Flood Flows14
37		2. Computed Water Supply Adjustment
38	C.	Calculation of Annual Allocations15
39	D.	Calculation of Annual Computed Beneficial Consumptive Use
40		1. Groundwater15
41		2. Surface Water
42	E.	Calculation to Determine Compact Compliance Using Five-Year Running Averages16
43	F.	Calculations To Determine Colorado's and Kansas's Compliance with the Sub- basin Non-
44	Im	pairment Requirement17
45	G.	Calculations To Determine Projected Water Supply17
46		1. Procedures to Determine Water Short Years
47		2. Procedures to Determine 130,000 Acre Feet Projected Water Supply
48	H.	Calculation of Computed Water Supply, Allocations and Computed Beneficial Consumptive
49	Us	e Above and Below Guide Rock During Water-Short Administration Years
50	I.	Calculation of Imported Water Supply Credits During Water-Short Year Administration Years.
51		19
52		1. Monthly Imported Water Supply Credits
53		2. Imported Water Supply Credits Above Harlan County Dam20
54		3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the
55		Irrigation Season
56		4. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the
57		Non-Irrigation Season
58		5. Other Credits
59	J.	Calculations of Compact Compliance in Water-Short Year Administration Years
60		
61	IV.	Specific Formulas
62	А.	Computed Beneficial Consumptive Use
63		1. Computed Beneficial Consumptive Use of Groundwater
64		2. Computed Beneficial Consumptive Use of Surface Water
65		a) Non-Federal Canals
66		b) Individual Surface Water Pumps

67		c) Federal Canals	
68		d) Non-irrigation Uses	24
69		e) Evaporation from Federal Reservoirs	24
70		(1) Harlan County Lake, Evaporation Calculation	24
71		(2) Evaporation Computations for Bureau of Reclamation Reservoirs	
72		f) Non-Federal Reservoir Evaporation	27
73	В.	Specific Formulas for Each Sub-basin and the Main Stem	
74		1. North Fork of Republican River in Colorado	
75		2. Arikaree River ³	29
76		3. Buffalo Creek	
77		4. Rock Creek	
78		5. South Fork Republican River	<u>31</u> 30
79		6. Frenchman Creek in Nebraska	
80		7. Driftwood Creek	
81		8. Red Willow Creek in Nebraska	
82		9. Medicine Creek	
83		10. Beaver Creek	
84		11. Sappa Creek	
85		12. Prairie Dog Creek	
86		13. The North Fork of the Republican River in Nebraska and the Main Stem of th	e Republican
87		River between the junction of the North Fork and the Arikaree River and the Rep	ublican River
88		near Hardy	
89			
90	V.	Annual Data/ Information Requirements, Reporting, and Verification	
91	A.	Annual Reporting	
92		1. Surface water diversions and irrigated acreage	
93		2. Groundwater pumping and irrigated acreage	
94		3. Climate information	41
95		4. Crop Irrigation Requirements	
96		5. Streamflow Records from State-Maintained Gaging Records	
97		6. Platte River Reservoirs	<u>43</u> 4 2
98		7. Water Administration Notification	
99		8. Moratorium	
100		9. Non-Federal Reservoirs	
101		10. Augmentation Projects	
102	B.	RRCA Groundwater Model Data Input Files	
103	C.	Inputs to RRCA Accounting	45
104		1. Surface Water Information	
105		2. Groundwater Information	
106		3. Summary	<u>47</u> 4 6
107	D.	Verification	47
108		1. Documentation to be Available for Inspection Upon Request	
		1 1 1	

110	
111	TABLES
112	Table 1: Annual Virgin and Computed Water Supply, Allocations and Computed Beneficial
113	Consumptive Uses by State, Main Stem and Sub-basin
114	Table 2: Original Compact Virgin Water Supply and Allocations 49
115	Table 3A: Table to Be Used to Calculate Colorado's Five-Year Running Average Allocation and
116	Computed Beneficial Consumptive Use for Determining Compact Compliance for Averaging
117	Periods with No Water Short Year Designations Pursuant to Section III.J
118	Table 3B. Table to Be Used to Calculate Kansas's Five-Year Running Average Allocation and
119	Computed Beneficial Consumptive Use for Determining Compact Compliance
120	Table 3C. Table to Be Used to Calculate Nebraska's Five-Year Running Average Allocation and
121	Computed Beneficial Consumptive Use for Determining Compact Compliance
122	Table 4A: Colorado Compliance with the Sub-basin Non-impairment Requirement
123	Table 4B: Kansas Compliance with the Sub-basin Non-impairment Requirement
124	Table 5A: Table to Be Used to Calculate Colorado's Compact Compliance for Averaging Periods
125	with Water Short Year Designations Pursuant to Section III.J
126	Table 5B: Kansas Compliance During Water-Short Year Administration 54
127	Table 5C: Nebraska Compliance During Water-Short Year Administration
128	Table 5D: Nebraska Compliance Under an Alternative Water-Short Year Administration Plan 56
129	Table 5E: Nebraska Tributary Compliance During Water-Short Year Administration 57
130	Table 5F: Colorado's Beaver Creek Reduction During Water-Short Years
131	
132	FIGURES
133	Basin Map Attached to Compact that Shows the Streams and the Basin Boundaries
134	Line Diagram of Designated Drainage Basins Showing Federal Reservoirs and Sub-basin Gaging
135	Stations
136	Map Showing Sub-basins, Streams, and the Basin Boundaries
137	
138	ATTACHMENTS
139	Attachment 1: Sub-basin Flood Flow Thresholds
140	Attachment 2: Description of the Consensus Plan for Harlan County Lake
141	Attachment 3: Inflows to Harlan County Lake 1993 Level of Development
142	Attachment 4: Evaporation Loss Harlan County Lake 1993 Level of Development71
143	Attachment 5: Projected Water Supply Spread Sheet Calculations
144	Attachment 6: Computing Water Supplies and Consumptive Use Above Guide Rock75
145	Attachment 7: Calculations of Return Flows from Bureau of Reclamation Canals
146	Attachment 8: Calculation of the Computed Water Supply Adjustment and Remaining Compact
147	Compliance Volume for Implementation of 2016 RRCA Resolution
148	Attachment 9: "Resolution Approving Long-Term Agreements Related to the Operation of Harlan
149	County Lake for Compact Call Years", adopted August 24, 2016
150	Attachment 10: "Resolution by the Republican River Compact Administration Approving
151	Operation and Accounting for the Colorado Compact Compliance Pipeline and Colorado's
152	Compliance Efforts in the South Fork Republican River Basin", adopted August 24, 2016
153	Attachment 11: RRCA "Resolution Approving Accounting Changes", adopted May 25, 201794

154 <u>I.</u> <u>Introduction</u>

155

156 This document describes the definitions, procedures, basic formulas, specific formulas, and data requirements and reporting formats to be used by the RRCA to compute the Virgin Water Supply, 157 Computed Water Supply, Allocations, Imported Water Supply Credit, Resolution Water Supply 158 Credits, and Computed Beneficial Consumptive Use. These computations shall be used to 159 determine supply, allocations, use and compliance with the Compact according to the Stipulation 160 and the attached RRCA Resolutions. These definitions, procedures, basic and specific formulas, 161 data requirements and attachments may be changed by consent of the RRCA consistent with 162 Subsection I.F of the Stipulation. This document will be referred to as the RRCA Accounting 163 Procedures. Attached to these RRCA Accounting Procedures as Figure 1 is the map attached to 164 the Compact that shows the Basin, its streams and the Basin boundaries. 165

166 167

169

172

168 <u>II.</u> <u>Definitions</u>

The following words and phrases as used in these RRCA Accounting Procedures are defined asfollows:

2016 Colorado CCP/SF Resolution: "Resolution Approving Operation and Accounting for the
 Colorado Compact Compliance Pipeline and Colorado's Compliance Efforts in the South Fork
 Republican River Basin", adopted by the RRCA on August 24, 2016;

176

180

185

187

189

191

193

2016 CCY HCL Operations Resolution: "Resolution Approving Long-Term Agreements
 Related to the Operation of Harlan County Lake for Compact Call Years", adopted by the RRCA
 on August 24, 2016;

Additional Water Administration Year: a year when the projected or actual irrigation water
 supply is less than 130,000 Acre-feet of storage available for use from Harlan County Lake as
 determined by the Bureau of Reclamation using the methodology described in the Harlan County
 Lake Operation Consensus Plan attached as Appendix K to the Stipulation;

- 186 Allocation(s): the water supply allocated to each State from the Computed Water Supply;
- **Annual:** yearly from January 1 through December 31;
- **Augmentation Pumping Volume:** The measured outflow from an augmentation project;
- **Basin:** the Republican River Basin as defined in Article II of the Compact;
- Beaver Creek Reduction: the Water Short Year reduction to Colorado's statewide allocation. The
 procedure to determine the Beaver Creek Reduction is set forth in III.E;
- 196 197

- Beneficial Consumptive Use: that use by which the Water Supply of the Basin is consumed
 through the activities of man, and shall include water consumed by evaporation from any
 reservoir, canal, ditch, or irrigated area;
- 202 **Change in Federal Reservoir Storage:** the difference between the amount of water in storage in 203 the reservoir on December 31 of each year and the amount of water in storage on December 31 of 204 the previous year. The current area capacity table supplied by the appropriate federal operating 205 agency shall be used to determine the contents of the reservoir on each date;
- Colorado Resolution Water Supply Credit (CORWS Credit): The credit provided for
 Colorado's Compact compliance activities through augmentation pumping in conformance with the
 2016 Colorado CCP/SF Resolution;
- 210

219

222

206

201

- Compact: the Republican River Compact, Act of February 22, 1943, 1943 Kan. Sess. Laws 612,
 codified at Kan. Stat. Ann. § 82a-518 (1997); Act of February 24, 1943, 1943 Neb. Laws 377,
 codified at 2A Neb. Rev. Stat. App. § 1-106 (1995), Act of March 15, 1943, 1943 Colo. Sess.
- Laws 362, codified at Colo. Rev. Stat. §§ 37-67-101 and 37-67-102 (2001); Republican River Compact, Act of May 26, 1943, ch. 104, 57 Stat. 86;
- 216
 217 Compact Compliance Volume (CCV): a volume of water, as defined under the 2016 CCY HCL
 218 Operations Resolution;
- Computed Beneficial Consumptive Use: for purposes of Compact accounting, the stream flow
 depletion resulting from the following activities of man:
- 223 Irrigation of lands in excess of two acres;
- Any non-irrigation diversion of more than 50 Acre-feet per year;
- Multiple diversions of 50 Acre-feet or less that are connected or otherwise combined to serve a single project will be considered as a single diversion for accounting purposes if
- they total more than 50 Acre-feet;
- 228 Net evaporation from Federal Reservoirs;
- Net evaporation from Non-federal Reservoirs within the surface boundaries of the Basin;
- Any other activities that may be included by amendment of these formulas by the RRCA;
- Computed Water Supply: the Virgin Water Supply less the Change in Federal Reservoir Storage
 in any Designated Drainage Basin, plus the Computed Water Supply Adjustment (for the
 Main Stem only), and less the Flood Flows;
- Computed Water Supply Adjustment: an adjustment made to the Computed Water Supply of
 the Main Stem reflecting water contributed to the Kansas Account that is not beneficially
 consumed in the year it is provided, consistent with the terms of the 2016 CCY HCL Operations
 Resolution;
- 240
- 241

Republican River Compact Administration

Designated Drainage Basins: the drainage basins of the specific tributaries and the Main Stem of
the Republican River as described in Article III of the Compact. Attached hereto as Figure 3 is a
map of the Sub-basins and Main Stem;

- **Dewatering Well:** a Well constructed solely for the purpose of lowering the groundwater elevation:
- 248

263

265

270

274

277

245

249 Federal Reservoirs:

- 250 251 Bonny Reservoir
- 252 Swanson Lake
- 253 Enders Reservoir
- 254 Hugh Butler Lake
- 255 Harry Strunk Lake
- 256 Keith Sebelius Lake
- 257 Harlan County Lake
- 258 Lovewell Reservoir 259
- Flood Flows: the amount of water deducted from the Virgin Water Supply as part of the
 computation of the Computed Water Supply due to a flood event as determined by the
 methodology described in Subsection III.B.1.;
- **Gaged Flow:** the measured flow at the designated stream gage;
- Guide Rock: a point at the Superior-Courtland Diversion Dam on the Republican River near
 Guide Rock, Nebraska; the Superior-Courtland Diversion Dam gage plus any flows through the
 sluice gates of the dam, specifically excluding any diversions to the Superior and Courtland
 Canals, shall be the measure of flows at Guide Rock;
- Historic Consumptive Use: that amount of water that has been consumed under appropriate and
 reasonably efficient practices to accomplish without waste the purposes for which the
 appropriation or other legally permitted use was lawfully made;
- Imported Water Supply: the water supply imported by a State from outside the Basin resulting
 from the activities of man;
- Imported Water Supply Credit: the accretions to stream flow due to water imports from outside
 of the Basin as computed by the RRCA Groundwater Model. The Imported Water Supply Credit
 of a State shall not be included in the Virgin Water Supply and shall be counted as a credit/offset
 against the Computed Beneficial Consumptive Use of water allocated to that State, except as
 provided in Subsection V.B.2. of the Stipulation and Subsections III.I. J. of these RRCA
 Accounting Procedures;
- 284 285

Kansas Account: an account that shall store all Project Water made available for exclusive use
 by Kansas Bostwick Irrigation District (KBID), and water supplies previously available to KBID
 under Warren Act Contract(s) existing as of the date of the 2016 Colorado CCP/SF Resolution
 and the 2016 CCY HCL Operations Resolution;

Kansas Supplemental Account: an account that shall store water supplies not in the Kansas
Account and which shall be for use outside of KBID within the state of Kansas in conformance
with the 2016 Colorado CCP/SF Resolution and the 2016 CCY HCL Operations Resolution;

- Main Stem: the Designated Drainage Basin identified in Article III of the Compact as the North
 Fork of the Republican River in Nebraska and the main stem of the Republican River between
 the junction of the North Fork and the Arikaree River and the lowest crossing of the river at the
 Nebraska-Kansas state line and the small tributaries thereof, and also including the drainage
 basin Blackwood Creek;
- Main Stem Allocation: the portion of the Computed Water Supply derived from the Main Stem
 and the Unallocated Supply derived from the Sub-basins as shared by Kansas and Nebraska;
- Meeting(s): a meeting of the RRCA, including any regularly scheduled annual meeting or any
 special meeting;
- 307 Modeling Committee: the modeling committee established in Subsection IV.C. of the308 Stipulation;
- Moratorium: the prohibition and limitations on construction of new Wells in the geographic area
 described in Section III. of the Stipulation;
- Nebraska Resolution Water Supply Credit (NERWS Credit): The credit provided for
 Nebraska's Compact compliance activities through augmentation pumping and other water
 management activities in conformance with the 2016 CCY HCL Operations Resolution;
- Non-federal Reservoirs: reservoirs other than Federal Reservoirs that have a storage capacity of
 15 Acre-feet or greater at the principal spillway elevation;
- 320 Northwest Kansas: those portions of the Sub-basins within Kansas;
- Remaining Compact Compliance Volume (RCCV): is a volume of water, as defined under the
 2016 CCY HCL Operations Resolution;
- 324
 325 **Replacement Well:** a Well that replaces an existing Well that a) will not be used after
- 326 construction of the new Well and b) will be abandoned within one year after such construction or
- is used in a manner that is excepted from the Moratorium pursuant to Subsections III.B.1.c.-f. of
- 328 the Stipulation;
- 329

294

300

303

306

309

312

316

319

321

	Republican River Compact Administration	Accounting Procedures and Reporting Requirements Revised August 21, 2020
330 331	RRCA : Republican River Compact Admini State officials identified in Article IX of the	stration, the administrative body composed of the Compact;
332 333	RRCA Accounting Procedures: this docur	nent and all attachments hereto;
334 335 336 337 338	RRCA Groundwater Model : the groundw Subsection IV.C. of the Stipulation and as su RRCA;	ater model developed under the provisions of absequently adopted and revised through action of the
339 340	State: any of the States of Colorado, Kansas	s, and Nebraska;
340 341	States: the States of Colorado, Kansas and I	Nebraska;
342 343 344 345	Stipulation: the Final Settlement Stipulation 126, Original, including all Appendices attac	n to be filed in <i>Kansas v. Nebraska and Colorado</i> , No. ched thereto;
346 347 348	Sub-basin : the Designated Drainage Basing the Compact. For purposes of Compact acco described below:	s, except for the Main Stem, identified in Article III of punting the following Sub-basins will be defined as
349 350 351 352	North Fork of the Republican River USGS gaging station number 068230 Nebraska State Line,	in Colorado drainage basin is that drainage area above 000, North Fork Republican River at the Colorado-
353 354 355 356	Arikaree River drainage basin is that 06821500, Arikaree River at Haigler	drainage area above USGS gaging station number , Nebraska,
357 358 359	Buffalo Creek drainage basin is that 06823500, Buffalo Creek near Haigl	drainage area above USGS gaging station number er, Nebraska,
360 361 362	Rock Creek drainage basin is that dra 06824000, Rock Creek at Parks, Neb	ainage area above USGS gaging station number oraska,
363 364 365	South Fork of the Republican River gaging station number 06827500, So Nebraska,	drainage basin is that drainage area above USGS outh Fork Republican River near Benkelman,
367 368 369	Frenchman Creek (River) drainage b gaging station number 06835500, Fr	asin in Nebraska is that drainage area above USGS enchman Creek in Culbertson, Nebraska,
370 371 372 373	Driftwood Creek drainage basin is th 06836500, Driftwood Creek near Mo	at drainage area above USGS gaging station number Cook, Nebraska,

Republican River Compact Administration Accounting Procedures and Reporting Requirements Revised August 21, 2020 374 Red Willow Creek drainage basin is that drainage area above USGS gaging station number 06838000, Red Willow Creek near Red Willow, Nebraska, 375 376 Medicine Creek drainage basin is that drainage area above the Medicine Creek below 377 Harry Strunk Lake, State of Nebraska gaging station number 06842500; and the drainage 378 area between the gage and the confluence with the Main Stem, 379 380 Sappa Creek drainage basin is that drainage area above USGS gaging station number 381 382 06847500, Sappa Creek near Stamford, Nebraska and the drainage area between the gage and the confluence with the Main Stem; and excluding the Beaver Creek drainage basin 383 area downstream from the State of Nebraska gaging station number 06847000 Beaver 384 Creek near Beaver City, Nebraska to the confluence with Sappa Creek, 385 386 Beaver Creek drainage basin is that drainage area above State of Nebraska gaging station 387 388 number 06847000, Beaver Creek near Beaver City, Nebraska, and the drainage area between the gage and the confluence with Sappa Creek, 389 390 Prairie Dog Creek drainage basin is that drainage area above USGS gaging station number 391 06848500, Prairie Dog Creek near Woodruff, Kansas, and the drainage area between the 392 gage and the confluence with the Main Stem; 393 394 Attached hereto as Figure 2 is a line diagram depicting the streams, Federal Reservoirs and gaging 395 stations; 396 397 Test hole: a hole designed solely for the purpose of obtaining information on hydrologic and/or 398 geologic conditions; 399 400 401 **Trenton Dam**: a dam located at 40 degrees, 10 minutes, 10 seconds latitude and 101 degrees, 3 minutes, 35 seconds longitude, approximately two and one-half miles west of the town of Trenton, 402 Nebraska; 403 404 Unallocated Supply: the "water supplies of upstream basins otherwise unallocated" as set forth in 405 Article IV of the Compact; 406 407 Upstream of Guide Rock, Nebraska: those areas within the Basin lying west of a line 408 proceeding north from the Nebraska-Kansas state line and following the western edge of Webster 409 County, Township 1, Range 9, Sections 34, 27, 22, 15, 10 and 3 through Webster County, 410 Township 2, Range 9, Sections 34, 27 and 22; then proceeding west along the southern edge of 411 Webster County, Township 2, Range 9, Sections 16, 17 and 18; then proceeding north following 412 413 the western edge of Webster County, Township 2, Range 9, Sections 18, 7 and 6, through Webster County, Township 3, Range 9, Sections 31, 30, 19, 18, 7 and 6 to its intersection with 414 the northern boundary of Webster County. Upstream of Guide Rock, Nebraska shall not include 415 that area in Kansas east of the 99° meridian and south of the Kansas-Nebraska state line: 416

417

	Republi	can River Compact Administration	Accounting Procedures and Reporting Requirements Revised August 21, 2020	
418 419	Virgin	• Water Supply: the Water Supply with	hin the Basin undepleted by the activities of man;	
420	Water	Short Year Administration: admini	stration in a year when the projected or actual	
421	irrigat	ion water supply is less than 119,000 a	cre feet of storage available for use from Harlan	
422	County Lake as determined by the Bureau of Reclamation using the methodology described in the			
423	Harlar	County Lake Operation Consensus Pl	an attached as Appendix K to the Stipulation.	
424				
425	Water	r Supply of the Basin or Water Suppl	y within the Basin: the stream flows within the	
426	Basin,	excluding Imported Water Supply;		
427				
428	Well:	any structure, device or excavation for	the purpose or with the effect of obtaining	
429	ground	dwater for beneficial use from an aquif	er, including wells, water wells, or groundwater	
430	wells a	as further defined and used in each Sta	e's laws, rules, and regulations.	
431				
432				
433	<u>III.</u>	<u>Basic Formulas</u>		
434				
435		The basic formulas for calculating Vi	rgin Water Supply, Computed Water Supply,	
436		Imported Water Supply, Allocations	and Computed Beneficial Consumptive Use are set	
437		forth below. The results of these calcu	lations shall be shown in a table format as shown	
438		in Table 1.		
439				
		Basic Formulas for Calculating	; Virgin Water Supply, Computed Water	

Basic Formulas for Calculating Virgin Water Supply, Computed Water				
Supply, Allocations and Computed Beneficial Consumptive Use				
Sub-basin VWS	=	Gage + All CBCU + Δ S - IWS - APV*		
Main Stem VWS	=	Hardy Gage – Σ Sub-basin gages + All CBCU in the Main Stem + Δ S – IWS		
CWS	=	VWS - Δ S - FF + CWSA ¹		
Allocation for each State in each Sub-basin And Main Stem	=	CWS x %		
State's Allocation	=	Σ Allocations for Each State		
State's CBCU	=	Σ State's CBCUs in each Sub-basin and Main Stem		

¹ The Computed Water Supply Adjustment (CWSA) is only applied to the Main Stem, with respect to Harlan County Lake operations, as described in Subsection IV.B and Attachment 8.

445	Abbreviations:
446	
447	APV = Augmentation Pumping Volume
448	CBCU = Computed Beneficial Consumptive Use
449	FF = Flood Flows
450	Gage = Gaged Flow
451	IWS = Imported Water Supply Credit
452	CWS = Computed Water Supply
453	CWSA = Computed Water Supply Adjustment
454	VWS = Virgin Water Supply
455	% = the ratio used to allocate the Computed Water Supply between the States. This
456	ratio is based on the allocations in the Compact
457	ΔS = Change in Federal Reservoir Storage
458	
459	Note: * The Augmentation Pumping Volume is not included as part of the Computed Water Supply
460	for the sub-basins or the Main Stem.
461	
462	A. Calculation of Annual Virgin Water Supply
463	
464	1. Sub-basin calculation:
465	The annual Virgin Water Supply for each Sub-basin will be calculated by adding:
466	a) the annual stream flow in that Sub-basin at the Sub-basin stream gage designated
467	in Section II., b) the annual Computed Beneficial Consumptive Use above that
468	gaging station, and c) the Change in Federal Reservoir Storage in that Sub-basin;
469	and from that total subtract any Imported Water Supply Credit and Augmentation
470	Pumping Volume. The Computed Beneficial Consumptive Use will be calculated
471	as described in Subsection III. D. Adjustments for flows diverted around stream
472	gages and for Computed Beneficial Consumptive Uses in the Sub-basin between
473	the Sub-basin stream gage and the confluence of the Sub-basin tributary and the
474	Main Stem shall be made as described in Subsections III. D. 1 and 2 and IV. B.
475	
476	
477	2. Main Stem Calculation:
478	The annual Virgin Water Supply for the Main Stem will be calculated by adding:
479	a) the flow at the Hardy gage minus the flows from the Sub-basin gages listed in
480	Section II, b) the annual Computed Beneficial Consumptive Use in the Main Stem,
481	and c) the Change in Federal Reservoir Storage from Swanson Lake and Harlan
482	County Lake; and from that total subtract any Imported Water Supply Credit for
483	the Main Stem. Adjustments for flows diverted around Sub-basin stream gages and
484	for Computed Beneficial Consumptive Uses in a Sub-basin between the Sub-basin
485	stream gage and the confluence of the Sub-basin tributary and the Mains Stem shall
486	be made as described in Subsections III. D. 1 and 2 and IV.B.,
487	
488	

/80	3 Imported Water Supply Credit Calculation:
485	The amount of Imported Water Supply Credit shall be determined by the RRCA
490	Groundwater Model. The Imported Water Supply Credit shall be determined by the RRCH
491	included in the Virgin Water Supply and shall be counted as a credit/offset against
492	the Computed Beneficial Consumptive Use of water allocated to that State
495	Currently, the Imported Water Supply Credits shall be determined using two runs
494 705	of the RRCA Groundwater Model:
495	of the KKCA Groundwater Woder.
490	a The "base" run shall be the run with all groundwater numping
497	a. The base full shall be the full with all groundwater pumping,
498	model study boundary for the current accounting year turned "on "
499 500	model study boundary for the current accounting year turned on.
500	b. The "no NE import" run shall be the run with the same model inputs as
501	b. The holder input the second of the full with the same model inputs as
502	with Nebraska's Imported Water Supply shall be turned "off" This will
505	be the same "no NE import" run used to determine groundwater
504	Computed Peneficial Consumptive Uses
505	Computed Beneficial Consumptive Oses.
500	The Imported Water Supply Credit shall be the difference in stream flows between
507	these two model must Differences in stream flows shall be determined at the same
508	la actions as identified in Subsection III D 1 for the "ne numerics" mus
509	Characteristic in Subsection III.D.I.Ior the no pumping runs.
510	Should another State import water into the Basin in the future, the RRCA will
511	develop a similar procedure to determine imported water Supply Credits.
512	
513	
514	4. Augmentation Pumping Volume
515	The Augmentation Pumping Volume (APV) of a State shall not be included in the
516	Virgin Water Supply of the applicable sub-basin.
517	
518	
519	B. Calculation of Computed Water Supply
520	
521	On any Designated Drainage Basin without a Federal Reservoir, the Computed
522	Water Supply will be equal to the Virgin Water Supply of that Designated
523	Drainage Basin minus Flood Flows.
524	
525	On any Designated Drainage Basin with a Federal Reservoir, the Computed Water
526	Supply will be equal to the Virgin Water Supply minus the Change in Federal
527	Reservoir Storage in that Designated Drainage Basin and minus Flood Flows. In the
528	Main Stem only, the Computed Water Supply Adjustment will also be added to
529	determine the Computed Water Supply for the Main Stem, as shown in Subsection
530	IV.B and discussed below in sub-section 2 and as illustrated in Attachment 8.
531	
532	

533	
534	1. Flood Flows
535	If in any calendar year there are five consecutive months in which the total actual
536	stream flow ² at the Hardy gage is greater than 325,000 Acre-feet, or any two
537	consecutive months in which the total actual stream flow is greater than 200,000
538	Acre-feet, the annual flow in excess of 400,000 Acre-feet at the Hardy gage will
539	be considered to be Flood Flows that will be subtracted from the Virgin Water
540	Supply to calculate the Computed Water Supply, and Allocations. The Flood Flow
541	in excess of 400,000 Acre-feet at the Hardy gage will be subtracted from the
542	Virgin Water Supply of the Main Stem to compute the Computed Water Supply
543	unless the Annual Gaged Flows from a Sub-basin, minus the Augmentation
544	Pumping Volume for that Sub-basin, were in excess of the flows shown for that
545	Sub-basin in Attachment 1. These excess Sub-basin flows shall be considered to
546	be Sub-basin Flood Flows.
547	
548	If there are Sub-basin Flood Flows, the total of all Sub-basin Flood Flows shall be
549	compared to the amount of Flood Flows at the Hardy gage. If the sum of the Sub-
550	basin Flood Flows are in excess of the Flood Flow at the Hardy gage, the flows to
551	be deducted from each Sub-basin shall be the product of the Flood Flows for each
552	Sub-basin times the ratio of the Flood Flows at the Hardy gage divided by the
553	sum of the Flood Flows of the Sub-basin gages. If the sum of the Sub-basin Flood
554	Flows is less than the Flood Flow at the Hardy gage, the entire amount of each
555	Sub-basin Flood Flow shall be deducted from the Virgin Water Supply to
556	compute the Computed Water Supply of that Sub-basin for that year. The
557	remainder of the Flood Flows will be subtracted from the flows of the Main Stem.
558	A Flood Flows adjustment term will also be subtracted in the Computed Water
559	Supply calculation between Guide Rock and Hardy. ³
560	
561	
562	2. Computed Water Supply Adjustment
563	The Computed Water Supply Adjustment shall be applied to the Main Stem
564	calculations for years when Nebraska's Compact compliance activities are stored
565	in Harlan County Lake for future Kansas use subject to the terms of the 2016 CCY

² These actual stream flows reflect Gaged Flows after depletions by Beneficial Consumptive Use and change in reservoir storage above the gage.

³ A method for calculating a Flood Flows adjustment term to be subtracted in the Computed Water Supply between Guide Rock and Hardy calculation in the event of Flood Flows has not yet been agreed upon for inclusion in this document. At its Annual Meeting on August 21, 2020, the RRCA agreed that the Accounting Procedures (Rev. May 25, 2017) do not properly implement the Flood Flow provisions at the Hardy gage with respect to the calculation of Computed Water Supply above and below Guide Rock.- The current implementation could impact Nebraska's Table 5C compliance test, specifically the Allocation above Guide Rock.- Nebraska and Kansas each offered proposals to resolve the issue but could not reach agreement on a solution. Due to the infrequent occurrence of Flood Flows, the RRCA deferred resolution of the matter to a future date necessitated by and preceding impact to Nebraska's Table 5C compliance. The states wish to acknowledge and memorialize the issue to encourage work toward its resolution.

566	HCL Operations Resolution. The methods used to calculate the Computed Water
567	Supply Adjustment and RCCV are contained in Attachment 8 and will be applied
568	for compliance activities initiated after October 1, 2015.
569	C. Calculation of Annual Allocations
570	
571	Article IV of the Compact allocates 54,100 Acre-feet for Beneficial Consumptive
572	Use in Colorado, 190,300 Acre-feet for Beneficial Consumptive Use in Kansas
573	and 234,500 Acre-feet for Beneficial Consumptive Use in Nebraska. The
574	Compact provides that the Compact totals are to be derived from the sources and
575	in the amounts specified in Table 2.
576	
577	The Allocations derived from each Sub-basin to each State shall be the Computed
578	Water Supply multiplied by the percentages set forth in Table 2. In addition,
579	Kansas shall receive 51.1% of the Main Stem Allocation and the Unallocated
580	Supply and Nebraska shall receive 48.9% of the Main Stem Allocation and the
581	Unallocated Supply.
582	
583	D. Calculation of Annual Computed Beneficial Consumptive Use
584	I I
585	
586	1. Groundwater
587	Computed Beneficial Consumptive Use of groundwater shall be determined by
588	use of the RRCA Groundwater Model. The Computed Beneficial Consumptive
589	Use of groundwater for each State shall be determined as the difference in
590	streamflows using two runs of the model:
591	5
592	The "no NE import" run shall be the run with all groundwater pumping.
593	groundwater pumping recharge, and surface water recharge within the model study
594	boundary for the current accounting year "on", with the exception that surface water
595	recharge associated with Nebraska's Imported Water Supply shall be turned "off."
596	
597	The "no State pumping" run shall be the run with the same model inputs as the
598	"no NE import" run with the exception that all groundwater pumping and
599	pumping recharge of that State shall be turned "off."
600	
601	An output of the model is baseflows at selected stream cells. Changes in the
602	baseflows predicted by the model between the "no NE import" run and the "no-
603	State- pumping" model run is assumed to be the depletions to streamflows, i.e.,
604	groundwater computed beneficial consumptive use, due to State groundwater
605	pumping at that location. The values for each Sub-basin will include all
606	depletions and accretions upstream of the confluence with the Main Stem. The
607	values for the Main Stem will include all depletions and accretions in stream
608	reaches not otherwise accounted for in a Sub-basin. The values for the Main Stem
609	will be computed separately for the reach above Guide Rock, and the reach below

610	Guide Rock.
611	
612	
613	2. Surface Water
614	The Computed Beneficial Consumptive Use of surface water for irrigation and
615	non- irrigation uses shall be computed by taking the diversions from the river and
616	subtracting the return flows to the river resulting from those diversions, as
617	described in Subsections IV.A.2.ad. The Computed Beneficial Consumptive Use
618	of surface water from Federal Reservoir and Non-Federal Reservoir evaporation
619	shall be the net reservoir evaporation from the reservoirs, as described in
620	Subsections IV.A.2.ef.
621	For Sub-basins where the gage designated in Section II. is near the confluence with
622	the Main Stem, each State's Sub-basin Computed Beneficial Consumptive Use of
623	surface water shall be the State's Computed Beneficial Consumptive Use of
624	surface water above the Sub-basin gage. For Medicine Creek, Sappa Creek, Beaver
625	Creek and Prairie Dog Creek, where the gage is not near the confluence with the
626	Main Stem, each State's Computed Beneficial Consumptive Use of surface water
627	shall be the sum of the State's Computed Beneficial Consumptive Use of surface
628	water above the gage, and its Computed Beneficial Consumptive Use of surface
629	water between the gage and the confluence with the Main Stem.
630	
631	E. Calculation to Determine Compact Compliance Using Five-Year
632	Running Averages
633	
634	Each year, using the procedures described herein, the RRCA will calculate the Annual
635	Allocations by Designated Drainage Basin and total for each State, the Computed
636	Beneficial Consumptive Use by Designated Drainage Basin and total for each State,
637	CORWS and NERWS (RWS Credits), and the Imported Water Supply Credit that a State
638	may use for the preceding year. These results for the current Compact accounting year as
639	well as the results of the previous four accounting years and the five-year average of these
640	results will be displayed in the format shown in Table 3.
641	
642	The amount of CORWS Credit shall be determined based on the Compact compliance
643	activities through augmentation pumping in conformance with the 2016 Colorado
644	CCP/SF Resolution. CORWS Credit shall be determined based on the measured outflow
645	from the Colorado Compact Compliance Pipeline. The CORWS Credit shall be counted
646	as a credit/offset against the Computed Beneficial Consumptive Use of water by
647	Colorado.
648	
649	Colorado's compliance will be measured based on the average of the accounting results
650	from the current accounting year's annual balance and the previous four accounting year's
651	annual balances. If none of those five years is a Water Short Year (as defined in Section
652	III.J.), then Colorado's compliance will be calculated using Table 3A.
653	

654	If any one of the previous four accounting years or the current accounting year is a Water				
655	Short Year (as defined in Section III.J.a and b), then Colorado's compliance will be				
656	calculated using Table 5A. For each accounting year that is designated as a Water Short				
657	Year pursuant to Section III.J, Colorado's statewide allocation will be reduced by the				
658	Beaver Creek Reduction which is the average of the unused Colorado Beaver Creek Sub-				
659	basin allocation for the five most-recent Water Short Year designations prior to that				
660	accounting year as shown in Table 5F example. The Beaver Creek Reduction will be				
661	reported in Table 5F. If the accounting year was not designated as a Water Short Year				
662	then the Beaver Creek Reduction will not be applied in that year.				
663					
664	The amount of NERWS Credit shall be determined based on the Compact compliance				
665	activities through augmentation pumping and other water management activities in				
666	conformance with the 2016 CCY HCL Operations Resolution. NERWS Credit for the				
667	vear shall be equal to the greater of the Compact Compliance Volume and the				
668	contribution from Nebraska's water management activities consistent with the 2016				
669	CCY HCL Operations Resolution. NERWS Credit shall be counted as a credit/offset				
670	against the Computed Beneficial Consumptive Use of water by Nebraska. NERWS				
671	Credit for Nebraska augmentation activities initiated prior to October 1, 2015, will be				
672	equal to the measured outflow from the augmentation projects.				
673					
674	F. Calculations To Determine Colorado's and Kansas's Compliance with the				
675	Sub- basin Non-Impairment Requirement				
676	I I I I I I I I I I I I I I I I I I I				
677	The data needed to determine Colorado's and Kansas's compliance with the Sub-basin non-				
678	impairment requirement in Subsection IV.B.2. of the Stipulation are shown in Tables 4.A.				
679	and B.				
680					
681	G. Calculations To Determine Projected Water Supply				
682	June 19 19 19 19 19 19 19 19 19 19 19 19 19				
683					
684	1. Procedures to Determine Water Short Years				
685	The Bureau of Reclamation will provide each of the States with a monthly or, if				
686	requested by any one of the States, a more frequent update of the projected or actual				
687	irrigation supply from Harlan County Lake for that irrigation season using the				
688	methodology described in the Harlan County Lake Operation Consensus Plan.				
689	attached as Appendix K to the Stipulation. The steps for the calculation are as				
690	follows:				
691					
692	Step 1. At the beginning of the calculation month (1) the total projected inflow				
693	for the calculation month and each succeeding month through the end of May				
694	shall be added to the previous end of month Harlan County Lake content and (2)				
695	the total projected 1993 level evaporation loss for the calculation month and each				
696	succeeding month through the end of May shall then be subtracted. The total				
697	projected inflow shall be the 1993 level average monthly inflow or the running				

Republican River Compact Administration Accounting Procedures and Reporting Requirements Revised August 21, 2020 698 average monthly inflow for the previous five years, whichever is less. 699 700 Step 2. Determine the maximum irrigation water available by subtracting the sediment pool storage (currently 164,111 Acre-feet) and adding the summer 701 sediment pool evaporation (20,000 Acre-feet) to the result from Step 1. 702 703 Step 3. For October through January calculations, take the result from Step 2 and 704 using the Shared Shortage Adjustment Table in Attachment 2 hereto, determine the 705 706 preliminary irrigation water available for release. The calculation using the end of December content (January calculation month) indicates the minimum amount of 707 708 irrigation water available for release at the end of May. For February through June calculations, subtract the maximum irrigation water available for the January 709 calculation month from the maximum irrigation water available for the calculation 710 month. If the result is negative, the irrigation water available for release (January 711 712 calculation month) stays the same. If the result is positive the preliminary irrigation water available for release (January calculation month) is increased by the positive 713 amount. 714 715 Step 4. Compare the result from Step 3 to 119,000 Acre-feet. If the result from 716 Step 3 is less than 119,000 Acre-feet Water Short Year Administration is in 717 effect. 718 719 Step 5. The final annual Water-Short Year Administration calculation determines 720 the total estimated irrigation supply at the end of June (calculated in July). Use 721 the result from Step 3 for the end of May irrigation release estimate, add the June 722 computed inflow to Harlan County Lake and subtract the June computed gross 723 evaporation loss from Harlan County Lake. 724 725 726 2. Procedures to Determine 130,000 Acre Feet Projected Water Supply 727 To determine the preliminary irrigation supply for the October through June 728 calculation months, follow the procedure described in steps 1 through 4 of the 729 "Procedures to determine Water Short Years" Subsection III. G. 1. The result from 730 step 4 provides the forecasted water supply, which is compared to 130,000 Acre-731 feet. For the July through September calculation months, use the previous end of 732 calculation month preliminary irrigation supply, add the previous month's Harlan 733 County Lake computed inflow and subtract the previous month's computed gross 734 evaporation loss from Harlan County Lake to determine the current preliminary 735 irrigation supply. The result is compared to 130,000 Acre-feet. 736 737 738 H. Calculation of Computed Water Supply, Allocations and Computed Beneficial 739 740 **Consumptive Use Above and Below Guide Rock During Water-Short**

741 Administration Years.

743	For Water-Short-Administration Years, in addition to the normal calculations, the
744	Computed Water Supply, Allocations, Computed Beneficial Consumptive Use, NERWS
745	Credit, and Imported Water Supply Credits shall also be calculated above Guide Rock as
746	shown in Table 5C. These calculations shall be done in the same manner as in non-
747	Water-Short Administration years except that water supplies originating below Guide
748	Rock shall not be included in the calculations of water supplies originating above Guide
749	Rock. The calculations of Computed Beneficial Consumptive Uses shall be also done in
750	the same manner as in non-Water-Short Administration years except that Computed
751	Beneficial Consumptive Uses from diversions below Guide Rock shall not be included.
752	The depletions from the water diverted by the Superior and Courtland Canals at the
753	Superior- Courtland Diversion Dam shall be included in the calculations of Computed
754	Beneficial Consumptive Use above Guide Rock. Imported Water Supply Credits above
755	Guide Rock, as described in Sub-section III.I., may be used as offsets against the
756	Computed Beneficial Consumptive Use above Guide Rock by the State providing the
757	Imported Water Supply Credits.
758	
759	The Computed Water Supply of the Main Stem reach between Guide Rock and the Hardy
760	gage shall be determined by taking the difference in stream flow at Hardy and Guide Rock,
761	adding Computed Beneficial Consumptive Uses in the reach (this does not include the
762	Computed Beneficial Consumptive Use from the Superior and Courtland Canal diversions),
763	and subtracting return flows from the Superior and Courtland Canals in the reach, and
764	subtracting the Flood Flow adjustment for the Main Stem between Guide Rock and Hardy. ⁴
765	The Computed Water Supply above Guide Rock shall be determined by subtracting the
766	Computed Water Supply of the Main Stem reach between Guide Rock and the Hardy gage
767	from the total Computed Water Supply. ⁵ Nebraska's Allocation above Guide Rock shall be
768	determined by subtracting 48.9% of the Computed Water Supply of the Main Stem reach
769	between Guide Rock and the Hardy gage from Nebraska's total Allocation. Nebraska's
770	Computed Beneficial Consumptive Uses above Guide Rock shall be determined by
771	subtracting Nebraska's Computed Beneficial Consumptive Uses below Guide Rock from
772	Nebraska's total Computed Beneficial Consumptive Use.
773	
774	I. Calculation of Imported Water Supply Credits During Water-Short
775	Year Administration Years.
776	
777	Imported Water Supply Credit during Water-Short Year Administration years shall be

- calculated consistent with Subsection V.B.2.b. of the Stipulation.
- 778 779

742

⁴ A method for calculating a Flood Flows adjustment term to be subtracted in the Computed Water Supply between Guide Rock and Hardy calculation in the event of Flood Flows has not yet been agreed upon for inclusion in this document.

⁵ At its Annual Meeting on August 21, 2020, the RRCA agreed to revisit the calculation of the Computed Water Supply of the Main Stem reach between Guide Rock and the Hardy gage and the Computed Water Supply above Guide Rock per Section III.B.1.

Supply Credit, as calculated by the RRCA Groundwater Model, can be credited to the State importing the water during Water-Short Year Administration years. 784 785 786 787 788 789 789 780 781 782 783 784 785 786 787 788 789 789 780 781 782 783 784 785 785 786 787 788 789 780 781 782 783 784 795 794 795 795 796 797 798 799 799 790 791 792 793 793 <th>780</th> <th>The following methodology shall be used to determine the extent to which Imported Water</th>	780	The following methodology shall be used to determine the extent to which Imported Water
782 importing the water during Water-Short Year Administration years. 783 1. Monthly Imported Water Supply Credits 786 The RRCA Groundwater Model will be used to determine monthly Imported 787 Water Supply Credits by State in each Sub-basin and for the Main Stem. The 788 values for each Sub-basin will include all depletions and accretions upstream of 789 the confluence with the Main Stem. The values for the Main Stem will include all 790 depletions and accretions in stream reaches not otherwise accounted for in a Sub-owe Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 791 basin. The values for the Main Stem will be computed separately for the reach 1) 792 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 butween Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 During Water Supply Credits Above Harlan County Dam 700 Nebraska's Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrig	781	Supply Credit, as calculated by the RRCA Groundwater Model, can be credited to the State
783 1. Monthly Imported Water Supply Credits 785 The RRCA Groundwater Model will be used to determine monthly Imported 787 Water Supply Credits by State in each Sub-basin and for the Main Stem. The 788 the confluence with the Main Stem. The values for the Main Stem will include all depletions and accretions upstream of 789 the confluence with the Main Stem. The values for the Main Stem will include all depletions and accretions in stream reaches not otherwise accounted for in a Sub- 791 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 792 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 During Water Supply Credits Above Harlan County Dam 705 not fall the credits in the Sub-basins and the Main Stem above Harlan County Dam. 706 S. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season 707 During W	782	importing the water during Water-Short Year Administration years.
784 785 1. Monthly Imported Water Supply Credits 786 The RRCA Groundwater Model will be used to determine monthly Imported 787 Water Supply Credits by State in each Sub-basin and for the Main Stem. The 788 values for each Sub-basin will include all depletions and accretions upstream of 789 the confluence with the Main Stem. The values for the Main Stem will include all 790 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 791 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Y ear Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 During Water Supply Credits Above Harlan County Dam 700 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam. 701 During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock During the Irrigation Season <	783	
785 I. Monthly Imported Water Supply Credits 786 The RRCA Groundwater Model will be used to determine monthly Imported 787 Water Supply Credits by State in each Sub-basin and for the Main Stem. The 788 values for each Sub-basin will include all depletions and accretions upstream of 789 the confluence with the Main Stem. The values for the Main Stem will include all 780 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 781 basin. The values for the Main Stem will be computed separately for the reach 1) 782 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 783 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 784 shall be the difference in stream flow for two runs of the model: a) the "base" run 785 and b) the "no State import" run. 786 7 797 During Water-Short Year Administration years, Nebraska's credits in the Sub-basins shall be determined as described in Section III. A. 3. 780 8 781 Daring Water Supply Credits Above Harlan County Dam shall be the 783 su of all the credits in the Sub-basins and the Main Stem above Harlan County Dam 780 8 780 ano flat the credits in th	784	
786 The RRCA Groundwater Model will be used to determine monthly Imported 787 Water Supply Credits by State in each Sub-basin and for the Main Stem. The 788 values for each Sub-basin will include all depletions and accretions upstream of 789 the confluence with the Main Stem. The values for the Main Stem will include all 790 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 791 basin. The values for the Main Stem will be computed separately for the reach 1 792 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 During Water Supply Credits Above Harlan County Dam 800 2. Imported Water Supply Credits Between Harlan County Dam and 801 2. Imported Water Supply Credits Between Harlan County Dam and 802 80 803 a. During Water-Short Year Administration years, monthly credits in the <	785	1. Monthly Imported Water Supply Credits
787 Water Supply Credits by State in each Sub-basin and for the Main Stem. The 788 values for each Sub-basin will include all depletions and accretions upstream of 789 the confluence with the Main Stem. The values for the Main Stem will include all 790 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 791 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 0 Nebraska's Imported Water Supply Credits Above Harlan County Dam 800 2. Imported Water Supply Credits Between Harlan County Dam shall be the 803 3. Imported Water Supply Credits Between Harlan County Dam and 804 Dam. Sum of all the credits in the Sub-basins and the Main Stem will unclude all determined 805 a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined <t< td=""><td>786</td><td>The RRCA Groundwater Model will be used to determine monthly Imported</td></t<>	786	The RRCA Groundwater Model will be used to determine monthly Imported
 values for each Sub-basin will include all depletions and accretions upstream of the confluence with the Main Stem. The values for the Main Stem will include all depletions and accretions in stream reaches not otherwise accounted for in a Sub- basin. The values for the Main Stem will be computed separately for the reach 1) above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit shall be the difference in stream flow for two runs of the model: a) the "base" run and b) the "no State import" run. During Water-Short Year Administration years, Nebraska's credits in the Sub- basins shall be determined as described in Section III. A. 3. During Water-Short Year Supply Credits Above Harlan County Dam Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the credits in the Sub-basins and the Main Stem above Harlan County Dam. Imported Water Supply Credits Between Harlan County Dam shall be the sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam. Juring Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock During the Irrigation Season a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock. b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use. c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	787	Water Supply Credits by State in each Sub-basin and for the Main Stem. The
789 the confluence with the Main Stem. The values for the Main Stem will include all 790 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 791 basin. The values for the Main Stem will be computed separately for the reach 1) 792 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 2. Imported Water Supply Credits Above Harlan County Dam 800 2. Imported Water Supply Credits Between Harlan County Dam 801 2. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season 806 3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock CDuring the Irrigation Season 806 a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock shall be composed as the differences in the stream flows between the two runs at Guide Rock.	788	values for each Sub-basin will include all depletions and accretions upstream of
790 depletions and accretions in stream reaches not otherwise accounted for in a Sub- 791 basin. The values for the Main Stem will be computed separately for the reach 1) 792 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 7 797 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 7 790 Nebraska's Imported Water Supply Credits Above Harlan County Dam 800 8 801 2. Imported Water Supply Credits Between Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam 805 8 806 8 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 c. Ack	789	the confluence with the Main Stem. The values for the Main Stem will include all
791basin. The values for the Main Stem will be computed separately for the reach 1)792above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and7933) between Guide Rock and the Hardy gage. The Imported Water Supply Credit794shall be the difference in stream flow for two runs of the model: a) the "base" run795and b) the "no State import" run.796797797During Water-Short Year Administration years, Nebraska's credits in the Sub-798basins shall be determined as described in Section III. A. 3.7997998002. Imported Water Supply Credits Above Harlan County Dam802Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the803sum of all the credits in the Sub-basins and the Main Stem above Harlan County804Dam.8058068073. Imported Water Supply Credits Between Harlan County Dam and808Guide Rock During the Irrigation Season809a. During Water-Short Year Administration years, monthly credits in the810a. During Water-Short Year Administration years, monthly credits in the811cach between Harlan County Dam and Guide Rock shall be determined812as the differences in the stream flows between the two runs at Guide813b. The irrigation season shall be defined as starting on the first day of816c. Credit as an offset for a State's Computed Beneficial Consumptive Use817the last day of release of water from Harlan County Lake for irrigation818use.829 <t< td=""><td>790</td><td>depletions and accretions in stream reaches not otherwise accounted for in a Sub-</td></t<>	790	depletions and accretions in stream reaches not otherwise accounted for in a Sub-
792 above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and 793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 800 801 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam 804 Dam. 805 806 806 807 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 reach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 b. The irrigation season shall be defined as starting on the first day of 814 b. The irrigation season shall be defined as starting on the first day of	791	basin. The values for the Main Stem will be computed separately for the reach 1)
793 3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit 794 shall be the difference in stream flow for two runs of the model: a) the "base" run 795 and b) the "no State import" run. 796 77 797 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 800 800 801 801 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County 806 806 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 reach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 Rock. 814 815 815 b. The irrigation season shall be defined as starting on the first day of <td< td=""><td>792</td><td>above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and</td></td<>	792	above Harlan County Dam, 2) between Harlan County Dam and Guide Rock, and
794 shall be the difference in stream flow for two runs of the model: a) the "base" run and b) the "no State import" run. 795 and b) the "no State import" run. 796 During Water-Short Year Administration years, Nebraska's credits in the Sub- basins shall be determined as described in Section III. A. 3. 799 0 800 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam. 805 806 807 3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock. 814 b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use. 819 0 820 c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide	793	3) between Guide Rock and the Hardy gage. The Imported Water Supply Credit
795 and b) the "no State import" run. 796 797 797 During Water-Short Year Administration years, Nebraska's credits in the Sub- basins shall be determined as described in Section III. A. 3. 799 800 801 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County 804 Dam. 805 806 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 creach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 Rock. 814 815 815 b. The irrigation season shall be defined as starting on the first day of 816 release of water from Harlan County Lake for irrigation 818 use. 819 0 820 c. Credit as an offset for a State's Computed Beneficial Consumptive Use<	794	shall be the difference in stream flow for two runs of the model: a) the "base" run
796 During Water-Short Year Administration years, Nebraska's credits in the Sub- 797 During Water-Short Year Administration years, Nebraska's credits in the Sub- 798 basins shall be determined as described in Section III. A. 3. 799 700 800 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County 804 Dam. 805 806 806 3. 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 810 a. During Water-Short Year Administration years, monthly credits in the 811 reach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 Rock. 814 b. The irrigation season shall be defined as starting on the first day of 815 b. The irrigation season shall be defined as starting on the first day of 816 releas	795	and b) the "no State import" run.
During Water-Short Year Administration years, Nebraska's credits in the Sub- basins shall be determined as described in Section III. A. 3.7993008003008012. Imported Water Supply Credits Above Harlan County Dam Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam.8058068068078073. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season809a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock.811b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use.812c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide irrigation season. If the period of the irrigation season does not coincide	796	
798 basins shall be determined as described in Section III. A. 3. 799 800 801 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County 804 Dam. 805 806 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 reach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 Rock. 814 815 815 b. The irrigation season shall be defined as starting on the first day of 816 release of water from Harlan County Lake for irrigation 817 the last day of release of water from Harlan County Lake for irrigation 818 use. 819 c. Credit as an offset for a State's Computed Beneficial Consumptive Use 821 above Guide Rock will be given to all the Imported Water Supply accruing	797	During Water-Short Year Administration years, Nebraska's credits in the Sub-
799 800 801 2. Imported Water Supply Credits Above Harlan County Dam 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County 804 Dam. 805 3. 806 3. 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 reach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 Rock. 814 b. The irrigation season shall be defined as starting on the first day of 815 b. The irrigation season shall be defined as starting on use and ending on 817 the last day of release of water from Harlan County Lake for irrigation 818 use. 829 c. Credit as an offset for a State's Computed Beneficial Consumptive Use 820 c. Credit as an offset for a State's Computed Beneficial Consumptive Use 821 above Guide Rock will be given to all the Imported W	798	basing shall be determined as described in Section III. A. 3.
800 801 2. Imported Water Supply Credits Above Harlan County Dam shall be the 802 Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the 803 sum of all the credits in the Sub-basins and the Main Stem above Harlan County 804 Dam. 805 Sum of all the credits in the Sub-basins and the Main Stem above Harlan County 804 Dam. 805 Sum of all the credits in the Sub-basins and the Main Stem above Harlan County 806 Dam. 807 3. Imported Water Supply Credits Between Harlan County Dam and 808 Guide Rock During the Irrigation Season 809 a. During Water-Short Year Administration years, monthly credits in the 811 reach between Harlan County Dam and Guide Rock shall be determined 812 as the differences in the stream flows between the two runs at Guide 813 Rock. 814 b. The irrigation season shall be defined as starting on the first day of 815 b. The irrigation season shall be defined as starting on the first day of 816 relast day of release of water from Harlan County Lake for irrigation 817 the last day of release of water from Harlan County Lake for irrigation 820 <	799	
 2. Imported Water Supply Credits Above Harlan County Dam Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam. 3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock. b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use. c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	800	
Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the sum of all the credits in the Sub-basins and the Main Stem above Harlan County Dam.B05B06B073. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation SeasonB09B10a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock.B11b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use.B19c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide	801	2. Imported Water Supply Credits Above Harlan County Dam
Solution of all the credits in the Sub-basins and the Main Stem above Harlan CountyB03Sum of all the credits in the Sub-basins and the Main Stem above Harlan CountyB05Dam.B06Supported Water Supply Credits Between Harlan County Dam andB08Guide Rock During the Irrigation SeasonB09a. During Water-Short Year Administration years, monthly credits in theB11reach between Harlan County Dam and Guide Rock shall be determinedB12as the differences in the stream flows between the two runs at GuideB13Rock.B14B15B15b. The irrigation season shall be defined as starting on the first day ofB16release of water from Harlan County Lake for irrigation use and ending onB17the last day of release of water from Harlan County Lake for irrigationB18use.B19Support Credit as an offset for a State's Computed Beneficial Consumptive UseB19Support Credit as an offset for a State's Computed Beneficial Consumptive UseB20c. Credit as an offset for a State's Computed Beneficial Consumptive UseB21above Guide Rock will be given to all the Imported Water Supply accruingB22in the reach between Harlan County Dam and Guide Rock during theB23irrigation season. If the period of the irrigation season does not coincide	802	Nebraska's Imported Water Supply Credits above Harlan County Dam shall be the
804Dam.805Bam.806Solution of the first of the first of the first day of807Solution of the first day of810a. During Water-Short Year Administration years, monthly credits in the811reach between Harlan County Dam and Guide Rock shall be determined812as the differences in the stream flows between the two runs at Guide813Rock.814Solution season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819Solution of the last of the last day of for a State's Computed Beneficial Consumptive Use820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	803	sum of all the credits in the Sub-basins and the Main Stem above Harlan County
 3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock. b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use. c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	804	Dam.
 3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock. b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use. c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	805	
 3. Imported Water Supply Credits Between Harlan County Dam and Guide Rock During the Irrigation Season a. During Water-Short Year Administration years, monthly credits in the reach between Harlan County Dam and Guide Rock shall be determined as the differences in the stream flows between the two runs at Guide Rock. b. The irrigation season shall be defined as starting on the first day of release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use. c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	806	
808Guide Rock During the Irrigation Season809810810811811812813813814815816817818818819820821821822823823823823823823824825825826827828829829820820821822823823823824825825826827828829829820820821822823823824825825826827828829829820821822823823824825825826827828829829820820821823823824825825826827828829829829820820821822823	807	3. Imported Water Supply Credits Between Harlan County Dam and
809810a. During Water-Short Year Administration years, monthly credits in the811reach between Harlan County Dam and Guide Rock shall be determined812as the differences in the stream flows between the two runs at Guide813Rock.814815815b. The irrigation season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819820820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	808	Guide Rock During the Irrigation Season
810a. During Water-Short Year Administration years, monthly credits in the811reach between Harlan County Dam and Guide Rock shall be determined812as the differences in the stream flows between the two runs at Guide813Rock.814815815b. The irrigation season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819820820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	809	
811reach between Harlan County Dam and Guide Rock shall be determined812as the differences in the stream flows between the two runs at Guide813Rock.814815815b. The irrigation season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819820820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	810	a. During Water-Short Year Administration years, monthly credits in the
812as the differences in the stream flows between the two runs at Guide813Rock.814815815b. The irrigation season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819820820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	811	reach between Harlan County Dam and Guide Rock shall be determined
813Rock.814b. The irrigation season shall be defined as starting on the first day of815b. The irrigation season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819season820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	812	as the differences in the stream flows between the two runs at Guide
 814 815 b. The irrigation season shall be defined as starting on the first day of 816 816 817 818 818 820 c. Credit as an offset for a State's Computed Beneficial Consumptive Use 821 820 above Guide Rock will be given to all the Imported Water Supply accruing 822 823 in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	813	Rock.
815b. The irrigation season shall be defined as starting on the first day of816release of water from Harlan County Lake for irrigation use and ending on817the last day of release of water from Harlan County Lake for irrigation818use.819820820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	814	
 release of water from Harlan County Lake for irrigation use and ending on the last day of release of water from Harlan County Lake for irrigation use. c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	815	b. The irrigation season shall be defined as starting on the first day of
817the last day of release of water from Harlan County Lake for irrigation818use.819.820c. Credit as an offset for a State's Computed Beneficial Consumptive Use821above Guide Rock will be given to all the Imported Water Supply accruing822in the reach between Harlan County Dam and Guide Rock during the823irrigation season. If the period of the irrigation season does not coincide	816	release of water from Harlan County Lake for irrigation use and ending on
 818 use. 819 820 c. Credit as an offset for a State's Computed Beneficial Consumptive Use 821 above Guide Rock will be given to all the Imported Water Supply accruing 822 in the reach between Harlan County Dam and Guide Rock during the 823 irrigation season. If the period of the irrigation season does not coincide 	817	the last day of release of water from Harlan County Lake for irrigation
 819 820 821 822 823 824 825 825 826 827 828 829 829 829 820 820 820 821 821 822 823 823 824 825 825 826 827 828 829 829 829 820 820 820 821 821 822 823 823 824 825 825 826 827 827 828 828 829 829 829 829 820 820 820 821 821 823 823 824 825 825 825 826 827 827 828 828 829 829 829 829 829 829 820 820 820 820 820 820 820 820 821 821 822 823 825 826 827 828 828 829 829 829 829 829 829 820 820	818	use.
 c. Credit as an offset for a State's Computed Beneficial Consumptive Use above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	819	
 above Guide Rock will be given to all the Imported Water Supply accruing in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	820	c. Credit as an offset for a State's Computed Beneficial Consumptive Use
 in the reach between Harlan County Dam and Guide Rock during the irrigation season. If the period of the irrigation season does not coincide 	821	above Guide Rock will be given to all the Imported Water Supply accruing
823 irrigation season. If the period of the irrigation season does not coincide	822	in the reach between Harlan County Dam and Guide Rock during the
	823	irrigation season. If the period of the irrigation season does not coincide

824	with the period of modeled flows, the amount of the Imported Water
825	Supply credited during the irrigation season for that month shall be the total
826	monthly modeled Imported Water Supply Credit times the number of days
827	in the month occurring during the irrigation season divided by the total
828	number of days in the month.
829	
830	
831	4. Imported Water Supply Credits Between Harlan County Dam and
832	Guide Rock During the Non-Irrigation Season
833	
834	a. Imported Water Supply Credit shall be given between Harlan County
835	Dam and Guide Rock during the period that flows are diverted to fill
836	Lovewell Reservoir to the extent that imported water was needed to
837	meet Lovewell Reservoir target elevations.
838	
839	b. Fall and spring fill periods shall be established during which credit shall
840	be given for the Imported Water Supply Credit accruing in the reach. The
841	fall period shall extend from the end of the irrigation season to December 1.
842	The spring period shall extend from March 1 to May 31. The Lovewell
843	target elevations for these fill periods are the projected end of November
844	reservoir level and the projected end of May reservoir level for most
845	probable inflow conditions as indicated in Table 4 in the current Annual
846	Operating Plan prepared by the Bureau of Reclamation.
847	
848	c. The amount of water needed to fill Lovewell Reservoir for each period
849	shall be calculated as the storage content of the reservoir at its target
850	elevation at the end of the fill period minus the reservoir content at the
851	start of the fill period plus the amount of net evaporation during this
852	period minus White Rock Creek inflows for the same period.
853	
854	d. If the fill period as defined above does not coincide with the period of
855	modeled flows, the amount of the Imported Water Supply Credit during the
856	fill period for that month shall be the total monthly modeled Imported
857	Water Supply Credit times the number of days in the month occurring
858	during the fill season divided by the total number of days in the month.
859	
860	e. The amount of non-imported water available to fill Lovewell Reservoir to
861	the target elevation shall be the amount of water available at Guide Rock
862	during the fill period minus the amount of the Imported Water Supply
863	Credit accruing in the reach during the same period.
864	
865	f. The amount of the Imported Water Supply Credit that shall be credited
866	against a State's Consumptive Use shall be the amount of water imported by
867	that State that is available in the reach during the fill period or the amount

868	of water needed to reach Lovewell Reservoir target elevations minus the
869	amount of non-imported water available during the fill period, whichever is
870	less.
871	
872	
873	
874	
875	5. Other Credits
876	Kansas and Nebraska will explore crediting Imported Water Supply that is
877	otherwise useable by Kansas.
878	
879	
880	J. Calculations of Compact Compliance in Water-Short Year Administration Years
881	
882	During Water-Short Year Administration, using the procedures described in Subsections
883	III.A-D, the RRCA will calculate the Annual Allocations for each State, the Computed
884	Beneficial Consumptive Use by each State, and Imported Water Supply Credit and RWS
885	Credits that a State may use to offset Computed Beneficial Consumptive Use in that year.
886	The resulting annual and average values will be calculated as displayed in Tables 5 A-C
887	and E.
888	The compliance tests outlined in Tables $5B - 5E$ shall not apply when on or before June
889	30:
890	a. the sum of all waters available for irrigation from Harlan County Lake, including
891	irrigation releases prior to June 30 of each year, the RCCV (as calculated in
892	Attachment 8), and the volume in the Kansas Supplemental Account, is greater
893	than or equal to 119,000 acre-feet; or
894	b. the sum of the Kansas Account, Kansas Supplemental Account, and irrigation
895	releases made from both accounts prior to June 30 of each year is greater than or
896	equal to 68,000 acre-feet.
897	
898	For the State of Colorado, if the current accounting year or any one of the previous four
899	years is designated as a Water Short Year based on the criteria in Section III.J.a or b
900	above, then Colorado's compliance will be calculated using Table 5A. The methods used
901	to implement the Table 5A calculations will be in conformance with Section III.E.
902	
903	If Nebraska is implementing an Alternative Water-Short-Year Administration Plan, data
904	to determine Compact compliance will be shown in Table 5D. Nebraska's compliance
905	with the Compact will be determined in the same manner as Nebraska's Above Guide
906	Rock compliance except that compliance will be based on a three-year running average
907	of the current year and previous two year calculations. In addition, Table 5 D. will
908	display the sum of the previous two-year difference in Allocations above Guide Rock and
909	Computed Beneficial Consumptive Uses above Guide Rock minus any Imported Water
910	Credits and compare the result with the Alternative Water-Short-Year Administration
911	Plan's expected decrease in Computed Beneficial Consumptive Use above Guide Rock.

	Republi	can River Compact A	Administration	Accounting Procedures and Reporting Requirements Revised August 21, 2020
912 913 914 915 916 917		Nebraska will be average difference year deficits abov Beneficial Consur	within compliance with e in Column 8 is positiv e Guide Rock are not g nptive Use under the p	the Compact as long as the three-year running we and the sum of the previous year and current reater than the expected decrease in Computed lan.
918 919	<u>IV.</u>	Specific Formula	<u>15</u>	
920				
921		A. Computed Be	eneficial Consumptive	Use
922				
923				
924		1. Comp	uted Beneficial Consu	imptive Use of Groundwater:
925		The Comp	uted Beneficial Consu	nptive Use caused by groundwater diversion
926		shall be de	termined by the RRCA	Groundwater Model as described in Subsection
927		III.D.1.		
920				
930		2. Comp	uted Beneficial Consu	mptive Use of Surface Water:
931		The Comp	uted Beneficial Consu	nptive Use of surface water shall be calculated as
932		follows:		1
933		a)	Non-Federal Canals	
934			Computed Beneficial	Consumptive Use from diversions by non- federal
935			canals shall be 60 percent	cent of the diversion; the return flow shall be 40
936			percent of the diversio	n
937				
938		1-)	Ludirida al Carefo a a W.	tan Duman
939		0)	Computed Beneficial	aer Pumps Consumptive Use from small individual surface
940 9/1			water numps shall be	75 percent of the diversion: return flows will be 25
942			percent of the diversion	on unless a state provides data on the amount of
943			different system types	in a Sub-basin, in which case the following
944			percentages will be us	ed for each system type:
945				
946			Gravity Flow	30%
947			Center Pivot	17%
948			LEPA	10%
949				
950			Enderel Consta	
92T 052		c)	Computed Reportional	Consumptive Use of diversions by Federal equals
952 952			will be calculated as a	hown in Attachment 7 For each Rureau of
954			Reclamation Canal th	e field deliveries shall be subtracted from the
955			diversion from the riv	er to determine the canal losses. The field delivery

956	shall be multiplied by one minus an average system efficiency for the
957	district to determine the loss of water from the field. Eighty-two percent
958	of the sum of the field loss plus the canal loss shall be considered to be
959	the return flow from the canal diversion for diversions occurring during
960	the irrigation season (May-September). For recharge diversions
961	occurring during the non-irrigation season (October-April), 92 percent
962	of the sum of the field loss plus the canal loss shall be considered to be
963	the return flow from the canal diversion. The assumed field efficiencies
964	and the amount of the field and canal loss that reaches the stream may be
965	reviewed by the RRCA and adjusted as appropriate to insure their
966	accuracy.
967	·
968	
969	d) Non-irrigation Uses
970	Any non-irrigation uses diverting or pumping more than 50 acre-feet
971	per year will be required to measure diversions. Non-irrigation uses
972	diverting more than 50 Acre-feet per year will be assessed a Computed
973	Beneficial Consumptive Use of 50% of what is pumped or diverted,
974	unless the entity presents evidence to the RRCA demonstrating a
975	different percentage should be used.
976	1 0
977	
978	e) Evaporation from Federal Reservoirs
979	Net Evaporation from Federal Reservoirs will be calculated as follows:
980	1
981	
982	(1) Harlan County Lake, Evaporation Calculation
983	
984	April 1 through October 31:
985	
986	Evaporation from Harlan County Lake is calculated by the Corps of
987	Engineers on a daily basis from April 1 through October 31. Daily
988	readings are taken from a Class A evaporation pan maintained near
989	the project office. Any precipitation recorded at the project office is
990	added to the pan reading to obtain the actual evaporation amount.
991	The pan value is multiplied by a pan coefficient that varies by
992	month. These values are:
993	
	March .56
	April .52
	May .53
	June .60
	July .68
	August .78
	-

994 995

996

997

998

999

1000

1001

1002 1003

1004 1005

1006

1007

1008 1009

1010 1011 1012

1013

1014 1015

1016

1017

1018

1019

1020

1021

1022

1023

1024 1025

1026

September	.91
October	1.01

The pan coefficients were determined by studies the Corps of Engineers conducted a number of years ago. The result is the evaporation in inches. It is divided by 12 and multiplied by the daily lake surface area in acres to obtain the evaporation in Acre-feet. The lake surface area is determined by the 8:00 a.m. elevation reading applied to the lake's area-capacity data. The area-capacity data is updated periodically through a sediment survey. The last survey was completed in December 2000.

November 1 through March 31

During the winter season, a monthly total evaporation in inches has been determined. The amount varies with the percent of ice cover. The values used are:

HARLAN COUNTY LAKE

Estimated Evaporation in Inches Winter Season -- Monthly Total PERCENTAGE OF ICE COVER

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
JAN	0.88	0.87	0.85	0.84	0.83	0.82	0.81	0.80	0.78	0.77	0.76
FEB	0.90	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.79
MAR	1.29	1.28	1.27	1.26	1.25	1.24	1.23	1.22	1.21	1.20	1.19
OCT	4.87			NO							
				IC							
NOV	2.81			NO							
				IC							
DEC	1.31	1.29	1.27	1.25	1.24	1.22	1.20	1.18	1.17	1.16	1.14

The monthly total is divided by the number of days in the month to obtain a daily evaporation value in inches. It is divided by 12 and multiplied by the daily lake surface area in acres to obtain the evaporation in Acre-feet. The lake surface area is determined by the 8:00 a.m. elevation reading applied to the lake's area-capacity data. The area-capacity data is updated periodically through a sediment survey. The last survey was completed in December 2000.

To obtain the net evaporation, the monthly precipitation on the lake

Accounting Procedures	and Reporting Requirements
	Revised August 21, 2020

1027	is subtracted from the monthly gross evaporation. The monthly
1028	precipitation is calculated by multiplying the sum of the month's
1029	daily precipitation in inches by the average of the end of the month
1030	lake surface area for the previous month and the end of the month
1031	lake surface area for the current month in acres and dividing the
1032	result by 12 to obtain the precipitation for the month in acre feet.
1033	
1034	Kansas supplemental accounts established within Harlan County
1035	Lake, as defined in the 2016 CCY HCL Operations Resolution, will
1036	be charged annual net evaporation in an amount proportional to the
1037	relative contents of the supplemental account compared to the total
1038	irrigation supply.
1039	
1040	The remaining annual net evaporation (Acre-feet) will be charged to
1041	Kansas and Nebraska in proportion to the annual diversions made
1042	by the Kansas Bostwick Irrigation District and the Nebraska
1043	Bostwick Irrigation District during the time period each year when
1044	irrigation releases are being made from Harlan County Lake. For
1045	any year in which no irrigation releases were made from Harlan
1046	County Lake, the annual net evaporation charged to Kansas and
1047	Nebraska will be based on the average of the above calculation for
1048	the most recent three years in which irrigation releases from Harlan
1049	County Lake were made. In the event Nebraska chooses to
1050	substitute supply for the Superior Canal from Nebraska's allocation
1051	below Guide Rock in Water-Short Year Administration years, the
1052	amount of the substitute supply will be included in the calculation of
1053	the split as if it had been diverted to the Superior Canal at Guide
1054	Rock.
1055	
1056	
1057 (2)	Evaporation Computations for Bureau of Reclamation Reservoirs
1058	The Bureau of Reclamation computes the amount of evaporation
1059	loss on a monthly basis at Reclamation reservoirs. The following
1060	procedure is utilized in calculating the loss in Acre-feet.
1061	
1062	An evaporation pan reading is taken each day at the dam site. This
1063	measurement is the amount of water lost from the pan over a 24-hour
1064	period in inches. The evaporation pan reading is adjusted for any
1065	precipitation recorded during the 24-hour period. Instructions for
1066	determining the daily pan evaporation are found in the "National
1067	Weather Service Observing Handbook No. 2 – Substation
1068	Observations." All dams located in the Kansas River Basin with the
1069	exception of Bonny Dam are National Weather Service Cooperative
1070	Observers. The daily evaporation pan readings are totaled at the end

1071	of each month and converted to a "free water surface" (FWS)
1072	evaporation, also referred to as "lake" evaporation. The FWS
1073	evaporation is determined by multiplying the observed pan
1074	evaporation by a coefficient of .70 at each of the reservoirs. This
1075	coefficient can be affected by several factors including water and air
1076	temperatures. The National Oceanic and Atmospheric
1077	Administration (NOAA) has published technical reports describing
1078	the determination of pan coefficients. The coefficient used is taken
1079	from the "NOAA Technical Report NWS 33, Map of coefficients to
1080	convert class A pan evaporation to free water surface evaporation".
1081	This coefficient is used for the months of April through October
1082	when evaporation pan readings are recorded at the dams. The
1083	monthly FWS evaporation is then multiplied by the average surface
1084	area of the reservoir during the month in acres. Dividing this value
1085	by twelve will result in the amount of water lost to evaporation in
1086	Acre-feet during the month.
1087	
1088	During the winter months when the evaporation pan readings are
1089	not taken, monthly evaporation tables based on the percent of ice
1090	cover are used. The tables used were developed by the Corps of
1091	Engineers and were based on historical average evaporation rates. A
1092	separate table was developed for each of the reservoirs. The
1093	monthly evaporation rates are multiplied by the .70 coefficient for
1094	pan to free water surface adjustment, divided by twelve to convert
1095	inches to feet and multiplied by the average reservoir surface area
1096	during the month in acres to obtain the total monthly evaporation
1097	loss in Acre- feet.
1098	
1099	To obtain the net evaporation, the monthly precipitation on the lake
1100	is subtracted from the monthly gross evaporation. The monthly
1101	precipitation is calculated by multiplying the sum of the month's
1102	daily precipitation in inches by the average of the end of the month
1103	lake surface area for the previous month and the end of the month
1104	lake surface area for the current month in acres and dividing the
1105	result by 12 to obtain the precipitation for the month in acre feet.
1106	
1107	
1108	f) Non-Federal Reservoir Evaporation:
1109	
1110	For Non-Federal Reservoirs with a storage capacity less than 200 Acre-feet,
1111	the presumptive average annual surface area is 25% of the area at the
1112	principal spillway elevation. Net evaporation for each such Non-Federal
1113	Reservoir will be calculated by multiplying the presumptive average annual
1114	surface area by the net evaporation from the nearest climate and evaporation

	Republican River Com	pact Administration	Accounting Procedures and Reporting Requirements Revised August 21, 2020			
1115		station to the Non-Fede	eral Reservoir. A State may provide actual data in lieu			
1116		of the presumptive crit	eria.			
1117						
1118		Net evaporation from 1	Non-Federal Reservoirs with 200 Acre-feet of			
1119		storage or greater will	be calculated by multiplying the average annual			
1120		surface area (obtained	from the area-capacity survey) and the net			
1121		evaporation from the n	earest evaporation and climate station to the			
1122		reservoir. If the average	e annual surface area is not available, the Non-			
1123		Federal Reservoirs wit	n 200 Acre-feet of storage or greater will be			
1124		presumed to be full at t	he principal spillway elevation.			
1125						
1126						
1127	B. Specific	Formulas for Each Sub-	basin and the Main Stem			
1128						
1129	All calculati	ons shall be based on the	calendar year and shall be rounded to the nearest 10			
1130	Acre-feet us	ing the conventional roun	ding formula of rounding up for all numbers equal			
1131	to five or hig	gher and otherwise roundi	ng down.			
1132						
1133	Abbreviation	ns:				
1134	APV	= Augmentation Pump	ing Volume			
1135	CBCU	= Computed Beneficia	Consumptive			
1136	Use CWS	= Computed Water Su	oply			
1137	CWSA	= Computed Water Su	oply Adjustment			
1138	D	= Non-Federal Canal I	Diversions for Irrigation			
1139	Ev	= Evaporation from Fe	deral Reservoirs			
1140	EvNFR	= Evaporation from No	n-Federal Reservoirs			
1141	FF	= Flood Flow				
1142	GW	= Groundwater Compu	ted Beneficial Consumptive Use (includes			
1143		irrigation and non-irrig	ation uses)			
1144	IWS	= Imported Water Sup	bly Credit from Nebraska			
1145	M&I	= Non-Irrigation Surfa	ce Water Diversions (Municipal and Industrial)			
1146	Р	= Small Individual Sur	face Water Pump Diversions for Irrigation			
1147	RF	= Return Flow				
1148	VWS	= Virgin Water Supply				
1149	с	= Colorado				
1150	k	= Kansas				
1151	n	= Nebraska				
1152	ΔS	= Change in Federal R	eservoir Storage			
1153	%	= Average system effic	iency for individual pumps in the Sub-basin			
1154	% BRF	= Percent of Diversion	from Bureau Canals that returns to the stream			
1155	###	= Value expected to be	Zero			
1156		-T				
1157						

	Republican River Compact Administrat	ion Accounting Procedures and Reporting Requirements Revised August 21, 2020
1158	1. North Fork of R	epublican River in Colorado ⁶
1159		1
1160	CBCU Colorado	= 0.6 x Haigler Canal Diversion Colorado $+ 0.6 x$ Dc $+ %$
1161		x Pc + 0.5 x M&Ic + EvNFRc + GWc
1162		
1163	CBCU Kansas	= GWk
1164		
1165	CBCU Nebraska	= 0.6 x Haigler Canal Diversion Nebraska + GWn
1166		-
1167		Note: The diversion for Haigler Canal is split between
1168		Colorado and Nebraska based on the percentage of land
1169		irrigated in each state
1170		
1171	VWS	= North Fork of the Republican River at the State Line,
1172		Stn. No. 06823000 + CBCUc + CBCUk + CBCUn
1173		+ Nebraska Haigler Canal RF– IWS – APV
1174		
1175		Note: The Nebraska Haigler Canal RF returns to the Main Stem.
1176	CWS	= VWS - FF
1177		
1178	Allocation Colorado	= 0.224 x CWS
1179		
1180	Allocation Nebraska	= 0.246 x CWS
1181		
1182	Unallocated	= 0.53 x CWS
1183		
1184		5
1 185	2. Arikaree River	
1186	CDCU Calarada	$-0.6 \times D_{2} + 0.07 \times D_{2} + 0.5 \times M_{\rm Pla} + E_{\rm T} MED_{2} + CW_{2}$
1187	CBCU Colorado	= 0.6 x Dc + % x Pc + 0.5 x Matc + EVNFRc + Gwc
1188	CDCU Kanaca	$= 0.6 \times D^{1} + 0.6 \times D^{1} + 0.5 \times M^{0} + E \times MED^{1} + CW^{1}$
1189	CBCU Kansas	-0.0 x DK + % x PK + 0.3 x MaIK + EVNFKK + GWK
1190	CPCU Nobrosko	$-0.6 \times Dn \pm \% \times Dn \pm 0.5 \times M$ & In $\pm ExNED n \pm GW$ n
1191	CBCU Neblaska	$= 0.0 \text{ x DH} \pm 70 \text{ x FH} \pm 0.3 \text{ x M} \text{ am} \pm \text{EVNFKII} \pm \text{GWH}$
1192	VWS	– Arikaree Gage at Haigler Str. No. 06821500 + CBCUc
110/	V W 5	+ CRCUk + CRCUn = IWS
1194		+ CDCOR + CDCOII - IWS
1196	CWS	= VWS - FF
1197	0,100	V VIG - 11
1198	Allocation Colorado	= 0.785 x CWS
1100		0.705 A C H D

⁶ The RRCA will investigate whether return flows from the Haigler Canal diversion in Colorado may return to the Arikaree River, not the North Fork of the Republican River, as indicated in the formulas. If there are return flows from the Haigler Canal to the Arikaree River, these formulas will be changed to recognize those returns.
1199		
1200	Allocation Kansas	= 0.051 x CWS
1201		
1202	Allocation Nebraska	= 0.168 x CWS
1203		
1204	Unallocated	= -0.004 x CWS
1205		
1206		
1207	3. Buffalo Creek	
1208		
1209	CBCU Colorado	= 0.6 x Dc + % x Pc + 0.5 x M M $+ EvNFRc$
1210		+ GWc
1211		
1212	CBCU Kansas	= GWk
1213		
1214	CBCU Nebraska	= 0.6 x Dn + % x Pn + 0.5 x M &In + EvNFRn + GWn
1215		
1216	VWS	= Buffalo Creek near Haigler Gage Stn. No. 06823500
1217		+ CBCUc $+$ CBCUk $+$ CBCUn $-$ IWS
1218		
1219	CWS	= VWS - FF
1220	Allocation Nebraska	= 0.330 x CWS
1221		
1222	Unallocated	= 0.670 x CWS
1223		
1224		
1225	4. Rock Creek	
1226		
1227	CBCU Colorado	= GWc
1228		
1229	CBCU Kansas	= GWk
1230		
1231	CBCU Nebraska	= 0.6 x Dn + % x Pn + 0.5 x M &In + EvNFRn + GWn
1232		
1233	VWS	= Rock Creek at Parks Gage Stn. No. 06824000 + CBCUc
1234		+ CBCUk + CBCUn - IWS - APV
1235		
1236	CWS	= VWS $-$ FF
1237		
1238	Allocation Nebraska	= 0.400 x CWS
1239		
1240	Unallocated	= 0.600 x CWS
1241		
1242		

1243	5. South Fork Republican River	
1244	-	
1245	CBCU Colorado	= 0.6 x Hale Ditch Diversion $+ 0.6 x$ Dc $+ % x$ Pc
1246		+ 0.5 x M&Ic + EvNFRc + Bonny Reservoir Ev + GWc
1247		
1248	CBCU Kansas	= 0.6 x Dk + % x Pk + 0.5 x M & Ik + EvNFRk + GWk
1249		
1250	CBCU Nebraska	= 0.6 x Dn + % x Pn + 0.5 x M Marker
1251		
1252	VWS	= South Fork Republican River near Benkelman Gage
1253		Stn. No. 06827500 + CBCUc + CBCUk + CBCUn
1254		$+ \Delta S$ Bonny Reservoir – IWS
1255		
1256	CWS	= VWS - Δ S Bonny Reservoir - FF
1257		
1258	Allocation Colorado	= 0.444 x CWS
1259		
1260	Allocation Kansas	= 0.402 x CWS
1261		
1262	Allocation Nebraska	= 0.014 x CWS
1263		
1264	Unallocated	= 0.140 x CWS
1265		
1266		
1267	6. Frenchman Cree	ek in Nebraska
1268		
1269	CBCU Colorado	= GWc
1270		
1271	CBCU Kansas	= GWk
1272		
1273	CBCU Nebraska	= Culbertson Canal Diversions (IRR Season) x (1-%BRF)
1274		+ Culbertson Canal Diversions (Non-IRR Season) x (1-
1275		92%) + Culbertson Extension (IRR Season) x (1-%BRF)
1276		+ Culbertson Extension (Non-IRR Season) x (1-92%)
1277		+ 0.6 x Champion Canal Diversion + 0.6 x Riverside Canal
1278		Diversion + 0.6 x Dn + % x Pn + 0.5 x M&In + EvNFRn
1279		+ Enders Reservoir Ev + GWn
1280		
1281	VWS	= Frenchman Creek in Culbertson, Nebraska Gage Stn. No.
1282		06835500 + CBCUc + CBCUk + CBCUn
1283		+ 0.17 x Culbertson Diversion RF + Culbertson Extension RF
1284		$+$ 0.78 x Riverside Diversion RF $+ \Delta$ S Enders Reservoir $-$
1285		IWS
1286		

	Republican River Compact Administration	on Accounting Procedures and Reporting Requirements Revised August 21, 2020
1287 1288		Note: 17% of the Culbertson Diversion RF and 100% of the Culbertson Extension RF return to the Main Stem
1289 1290	CWS	= VWS - Δ S Enders Reservoir – FF
1291 1292	Allocation Nebraska	= 0.536 x CWS
1293 1294	Unallocated	= 0.464 x CWS
1295 1296	7. Driftwood Creek	ζ.
1297	CBCU Colorado	= GWc
1298	CBCU Kansas	= 0.6 x Dk + % x Pk + 0.5 x M & Ik + EvNFRk + GWk
1300	CBCU Nebraska	= $0.6 \text{ x Dn} + \% \text{ x Pn} + 0.5 \text{ x M} \text{\&In} + \text{EvNFRn} + \text{GWn}$
1302 1303 1304	VWS	= Driftwood Creek near McCook Gage Stn. No. 06836500 + CBCUc + CBCUk + CBCUn
1305 1306		– 0.24 x Meeker Driftwood Canal RF - IWS
1307 1308		Note: 24 % of the Meeker Driftwood Canal RF returns to Driftwood Creek
1309 1310	CWS	= VWS $-$ FF
1311 1312	Allocation Kansas	= 0.069 x CWS
1313 1314	Allocation Nebraska	= 0.164 x CWS
1315 1316	Unallocated	= 0.767 x CWS
1317 1318		
1319 1320	8. Red Willow Cree	ek in Nebraska
1321 1322	CBCU Colorado	= GWc
1323 1324	CBCU Kansas	= GWk
1325 1326 1327	CBCU Nebraska	= 0.1 x Red Willow Canal CBCU + 0.6 x Dn + % x Pn + 0.5 x M&In + EvNFRn + 0.1 x Hugh Butler Lake Ev + GWn
1328		Note
1330		Red Willow Canal CBCU = Red Willow Canal Diversion

	Republican River Compact Administration	Accounting Procedures and Reporting Requirements Revised August 21, 2020	
1331 1332		(IRR Season) x (1- % BRF) + Red Willow Canal Diversion (Non-IRR Season) x (1-92%)	
1333			
1334		90% of the Red Willow Canal CBCU and 90% of Hugh	
1335		Butler Lake Ev charged to Nebraska's CBCU in the Main	
1336		Stem	
1337			
1338	VWS	= Red Willow Creek near Red Willow Gage Stn. No.	
1339		06838000 + CBCUc + CBCUk + CBCUn + 0.9 x Red	
1340		Willow Canal CBCU + 0.9 x Hugh Butler Lake Ev + 0.9 x	
1341		Red Willow Canal RF+ Δ S Hugh Butler Lake – IWS	
1342			
1343		Note: 90% of the Red Willow Canal RF returns to the	
1344		Main Stem	
1345			
1346	CWS	= VWS - Δ S Hugh Butler Lake - FF	
1347			
1348	Allocation Nebraska	= 0.192 x CWS	
1349	TT 11 . 1	0.000 CWIC	
1350	Unallocated	= 0.808 x CWS	
1351			
1352			
1353	9. Medicine Creek		
1354	CDCU Calana la	CW	
1355	CBCU Colorado	= Gwc	
1350	CPCU Vanaga		
1357	CBCU Kalisas	- Uwk	
1220	CRCU Nebraska	$= 0.6 \text{ y}$ Dn above and below gage $\pm \%$ y Dn above and below	
1329	CBCO Neoraska	$= 0.0 \times Dh$ above and below gage + 70×1 h above and below gage + 0.5 x M&In above and below gage + EvNERn above	
1360		and below gage $+$ GWn	
1362		and below gage + G wit	
1363		Notes: Harry Strunk Lake Ev charged to Nebraska's	
1364		CBCU in the Main Stem.	
1365			
1366		CU from Harry Strunk releases in the Cambridge Canal is	
1367		charged to the Main stem (no adjustment to the VWS	
1368		formula is needed as this water shows up in the Medicine	
1369		Creek gage).	
1370			
1371	VWS	= Medicine Creek below Harry Strunk Lake Gage Stn. No.	
1372		06842500 + CBCUc + CBCUk + CBCUn - 0.6 x Dn below	
1373		gage - % x Pn below gage -0.5 * M&In below gage	
1374		- EvNFRn below gage + Harry Strunk Lake Ev + Δ S Harry	

	Republican River Compact Administration	on Accounting Procedures and Reporting Requirements Revised August 21, 2020
1375		Strunk Lake – IWS – APV
1376		
1377		Note: The CBCU surface water terms for Nebraska which
1378		occur below the gage are added in the VWS for the Main
1379		Stem
1380		
1381	CWS	= VWS - Δ S Harry Strunk Lake - FF
1382		
1383	Allocation Nebraska	= 0.091 x CWS
1384		
1385	Unallocated	= 0.909 x CWS
1386		
1387	10	
1388	10. Beaver Creek	
1389		
1390	CBCU Colorado	= 0.6 x Dc + % x Pc + 0.5 x M&Ic + EvNFRc + GWc
1391	CDCUV	
1392	CBCU Kansas	= 0.6 X DK + % X PK + 0.5 X M&IK + EVNFKK + GWK
1393	CDCU Nabrasha	$= 0.6 \text{ y}$ Dr shows and helew eres $\pm 0/3 \text{ y}$ Dr shows and
1394	CBCU Nedraska	$-0.0 \times Dn$ above and below gage + % $\times Pn$ above and below gage
1206		+ EvNER above and below gage + GWn
1207		+ EVINT KII above and below gage + G will
1302	VWS	= Beaver Creek near Beaver City gage Stn. No. 06847000 +
1399	V W 5	BCUc + CBCUk + CBCUn = $0.6 \times \text{Dn}$ below gage - $\% \times \text{Pn}$
1400		below gage – 0.5 * M&In below gage - EvNFRn below
1401		gage – IWS
1402		8.8
1403		Note: The CBCU surface water terms for Nebraska which
1404		occur below the gage are added in the VWS for the Main
1405		Stem
1406		
1407	CWS	= VWS $-$ FF
1408		
1409	Allocation Colorado	= 0.200 x CWS
1410		
1411	Allocation Kansas	= 0.388 x CWS
1412		
1413	Allocation Nebraska	= 0.406 x CWS
1414		
1415	Unallocated	= 0.006 x CWS
1416		
1417	44 ~ ~ -	
1418	11. Sappa Creek	

1419		
1420	CBCU Colorado	= GWc
1421		
1422	CBCU Kansas	= 0.6 x Dk + % x Pk + 0.5 x M & Ik + EvNFRk + GWk
1423		
1424	CBCU Nebraska	= 0.6 x Dn above and below gage $+ % x Pn$ above and
1425		below gage + 0.5 x M&In above and below gage
1426		+ EvNFRn above and below gage + GWn
1427		
1428	VWS	= Sappa Creek near Stamford gage Stn. No. 06847500
1429		 Beaver Creek near Beaver City gage Stn. No. 06847000
1430		+ CBCUc $+$ CBCUk $+$ CBCUn $-$ 0.6 x Dn below gage
1431		- % x Pn below gage – 0.5 * M&In below gage - EvNFRn
1432		below gage - IWS
1433		
1434		Note: The CBCU surface water terms for Nebraska which
1435		occur below the gage are added in the VWS for the Main Stem.
1436	CWS	= VWS - FF
1437		
1438	Allocation Kansas	= 0.411 x CWS
1439		
1440	Allocation Nebraska	= 0.411 x CWS
1441		
1442	Unallocated	= 0.178 x CWS
1443		
1444		
1445	12. Prairie Dog Cre	ek
1446	C	
1447	CBCU Colorado	= GWc
1448		
1449	CBCU Kansas	= Almena Canal Diversion x $(1-\%BRF) + 0.6 \text{ x Dk} + \% \text{ x Pk}$
1450		+ 0.5 x M&Ik + EvNFRk + Keith Sebelius Lake Ev + GWk
1451		
1452	CBCU Nebraska	= 0.6 x Dn below gage + % x Pn below gage + 0.5 x
1453		M&In below gage + EvNFRn + GWn below gage
1454		
1455	VWS	= Prairie Dog Creek near Woodruff, Kansas USGS Stn. No.
1456		06848500 + CBCUc + CBCUk + CBCUn - 0.6 x Dn below
1457		gage - % x Pn below gage - 0.5 x M&In below gage -
1458		EvNFRn below gage + Δ S Keith Sebelius Lake - IWS
1459		
1460		Note: The CBCU surface water terms for Nebraska which
1461		occur below the gage are added in the VWS for the Main
1462		Stem

Accounting Procedures and Reporting Requirements Revised August 21, 2020

1463		
1464	CWS	= VWS - Δ S Keith Sebelius Lake - FF
1465		
1466	Allocation Kansas	= 0.457 x CSW
1467		
1468	Allocation Nebraska	= 0.076 x CWS
1469		
1470	Unallocated	= 0.467 x CWS
1471	13. The North Fo	rk of the Republican River in Nebraska and the Main
1472	Stem of the Republi	can River between the junction of the North Fork and
1473	the Arikaree River a	and the Republican River near Hardy
1474		i v
1475	CBCU Colorado	= GWc
1476		
1477		
1478	CBCU Kansas	=
1479		(Deliveries from the Courtland Canal to Kansas above
1480		Lovewell) x (1-%BRF)
1481		+ Amount of transportation loss of Courtland Canal
1482		deliveries to Lovewell that does not return to the river,
1483		charged to Kansas
1484		+ (Diversions of Republican River water from Lovewell
1485		Reservoir by the Courtland Canal below Lovewell)
1486		x (1-%BRF)
1487		+0.6 x Dk
1488		+ % x Pk
1489		+ 0.5 x M&Ik
1490		+ EvNFRk
1491		+ Harlan County Lake Ev charged to Kansas
1492		+ Lovewell Reservoir Ev charged to the Republican River
1493		+ GWk
1494		
1495	CBCU Nebraska	=
1496		Deliveries from Courtland Canal to Nebraska lands x (1-
1497		%BRF)
1498		+ Superior Canal (IRR Season) x (1- %BRF) + Superior Canal
1499		(Non-IRR Season) x (1 - 92%)
1500		+ Franklin Pump Canal (IRR Season) x (1- %BRF) +
1501		Franklin Pump Canal (Non-IRR Season) x (1 - 92 %)
1502		+ Franklin Canal (IRR Season) x (1- %BRF) + Franklin Canal
1503		(Non-IRR Season) x (1 - 92%)
1504		+ Naponee Canal (IRR Season) x (1- %BRF) + Naponee
1505		Canal (Non-IRR Season) x (1 - 92%)
1506		+ Cambridge Canal (IRR Season) x (1- %BRF) + Cambridge

	Republican River Compact Administratio	n Accounting Procedures and Reporting Requirements Revised August 21, 2020
1507		Canal (Non-IRR Season) x (1 - 92%)
1508		+ Bartley Canal (IRR Season) x (1- %BRF) + Bartley Canal
1509		(Non-IRR Season) x (1 - 92%)
1510		+ Meeker-Driftwood Canal (IRR Season) x (1- %BRF) +
1511		Meeker-Driftwood Canal (Non-IRR Season) x (1-92%)
1512		+ 0.9 x Red Willow Canal CBCU
1513		+ 0.6 x Dn
1514		+ % x Pn
1515		+ 0.5 x M&In
1516		+ EvNFRn
1517		+ 0.9 x Hugh Butler Lake Ev
1518		+ Harry Strunk Lake Ev
1519		+ Swanson Lake Ev
1520		+ Harlan County Lake Ev charged to Nebraska
1521		+ GWn
1522		
1523		Notes:
1524		The allocation of transportation losses in the Courtland
1525		Canal above Lovewell between Kansas and Nebraska shall
1526		be done by the Bureau of Reclamation and reported in their
1527		"Courtland Canal Above Lovewell" spreadsheet. Deliveries
1528		and losses associated with deliveries to both Nebraska and
1529		Kansas above Lovewell shall be reflected in the Bureau's
1530		Monthly Water District reports. Losses associated with
1531		delivering water to Lovewell shall be separately computed.
1532		
1533		Amount of transportation loss of the Courtland Canal
1534		deliveries to Lovewell that does not return to the river,
1535		charged to Kansas shall be 18% of the Bureau's estimate
1536		of losses associated with these deliveries.
1537		
1538		Red Willow Canal CBCU = Red Willow Canal Diversion x
1539		(IRR Season) x (1- % BRF) + Red Willow Canal Diversion
1540		(Non-IRR Season) x $(1 - 92\%)$
1541		
1542		10% of the Red Willow Canal CBCU is charged to
1543		Nebraska's CBCU in Red Willow Creek sub-basin
1544		
1545		10% of Hugh Butler Lake Ev is charged to Nebraska's
1546		CBCU in the Red Willow Creek sub-basin
1547		
1548		None of the Harry Strunk Lake EV is charged to Nebraska's
1549		CBCU in the Medicine Creek sub-basin
1550		

Accounting Procedu	res and Reporting Requirements
	Revised August 21, 2020

1551	VWS	=
1552		Republican River near Hardy Gage Stn. No. 06853500
1553		- North Fork of the Republican River at the State Line,
1554		Stn. No. 06823000
1555		- Arikaree Gage at Haigler Stn. No. 06821500
1556		- Buffalo Creek near Haigler Gage Stn. No. 06823500
1557		- Rock Creek at Parks Gage Stn. No. 06824000
1558		- South Fork Republican River near Benkelman Gage Stn.
1559		No. 06827500
1560		- Frenchman Creek in Culbertson Stn. No. 06835500
1561		- Driftwood Creek near McCook Gage Stn. No. 06836500
1562		- Red Willow Creek near Red Willow Gage Stn.
1563		No. 06838000
1564		- Medicine Creek below Harry Strunk Lake Gage Stn.
1565		No. 06842500
1566		- Sappa Creek near Stamford Gage Stn. No. 06847500
1567		- Prairie Dog Creek near Woodruff, Kansas Stn. No.
1568		068485000
1569		
1570		+ CBCUc
1571		+ CBCUn
1572		
1573		+ 0.6 x Dk
1574		+ % x Pk
1575		+ 0.5 x M&Ik
1576		+ EvNFRk
1577		+ Harlan County Lake Ev charged to Kansas
1578		+ Amount of transportation loss of the Courtland Canal
1579		above the Stateline that does not return to the river, charged
1580		to Kansas
1581		+ GWk
1582		
1583		- 0.9 x Red Willow Canal CBCU
1584		- 0.9 x Hugh Butler Ev
1585		- Harry Strunk Ev
1586		
1587		+ 0.6 x Dn below Medicine Creek gage
1588		+ % x Pn below Medicine Creek gage
1589		+ 0.5 * M&In below Medicine Creek gage
1590		+ EvNFRn below Medicine Creek gage
1591		
1592		+ 0.6 x Dn below Beaver Creek gage
1593		+ % x Pn below Beaver Creek gage
1594		+ 0.5 * M&In below Beaver Creek gage

Republican River Compact Administration Accounting Procedures and Reporting Requirements Revised August 21, 2020 + EvNFRn below Beaver Creek gage 1595 1596 1597 + 0.6 x Dn below Sappa Creek gage + % x Pn below Sappa Creek gage 1598 + 0.5 * M&In below Sappa Creek gage 1599 + EvNFRn below Sappa Creek gage 1600 1601 + 0.6 x Dn below Prairie Dog Creek gage 1602 1603 + % x Pn below Prairie Dog Creek gage + 0.5 * M&In below Prairie Dog Creek gage 1604 + EvNFRn below Prairie Dog Creek gage 1605 1606 + Change in Storage Harlan County Lake 1607 + Change in Storage Swanson Lake 1608 1609 - Nebraska Haigler Canal RF 1610 - 0.78 x Riverside Canal RF 1611 - 0.17 x Culbertson Canal RF 1612 - Culbertson Canal Extension RF to Main Stem 1613 + 0.24 x Meeker Driftwood Canal RF which returns to 1614 Driftwood Creek 1615 - 0.9 x Red Willow Canal RF 1616 1617 + Courtland Canal at Kansas-Nebraska State Line Gage Stn 1618 No. 06852500 1619 - Courtland Canal RF in Kansas above Lovewell Reservoir 1620 1621 - IWS 1622 1623 Notes: 1624 1625 None of the Nebraska Haigler Canal RF returns to the North Fork of the Republican River 1626 1627 83% of the Culbertson Diversion RF and none of the 1628 Culbertson Extension RF return to Frenchman Creek 1629 1630 24 % of the Meeker Driftwood Canal RF returns to 1631 Driftwood Creek. 1632 1633 10% of the Red Willow Canal RF returns to Red Willow 1634 Creek 1635 1636 Courtland Canal RF in Kansas above Lovewell Reservoir = 1637 0.015 x (Courtland Canal at Kansas-Nebraska State Line 1638

	Republican River Compact Administratio	Accounting Procedures and Reporting Requirements Revised August 21, 2020
9		Gage Stn No. 06852500)
0 1 2	CWS	= VWS - Change in Storage Harlan County Lake - Change in Storage Swanson Lake – FF + CWSA
	Allocation Kansas	= 0.511 x CWS
	Allocation Nebraska	= 0.489 x CWS
	V. Annual Data/ Information Red	quirements, Reporting, and Verification
	The following information for the pr RRCA Engineering Committee by A	revious calendar year shall be provided to the members of the april 15 th of each year, unless otherwise specified.
	All information shall be provided in	electronic format, if available.
	Each State agrees to provide all info RRCA Groundwater Model and RRC including but not limited to the follo	rmation from their respective State that is needed for the CA Accounting Procedures and Reporting Requirements, wing:
	A. Annual Reporting	
	1 Surface water di	versions and irrigated acreage.
	Each State will tabula	ate the canal, ditch, and other surface water diversions that are
	required by RRCA ar	nnual compact accounting and the RRCA Groundwater Model
	on a monthly format	(or a procedure to distribute annual data to a monthly basis)
	and will forward the s	surface water diversions to the other States. This will include
	available diversion, w	vasteway, and farm delivery data for canals diverting from the
	Platte River that cont	ribute to Imported Water Supply into the Basin. Each State
	will provide the water	r right number, type of use, system type, location, diversion
	amount, and acres irr	igated.
	2. Groundwater pu	mping and irrigated acreage:
	Each State will tabula	te and provide all groundwater well pumping estimates
	that are required for the	he RRCA Groundwater Model to the other States.
	-	
	Colorado – w	ill provide an estimate of pumping based on a county format
	that is based u	pon system type, Crop Irrigation Requirement (CIR),
	irrigated acrea	ge, crop distribution, and irrigation efficiencies. Colorado
	will require in	stallation of a totalizing flow meter, installation of an hours
	meter with a n	neasurement of the pumping rate, or determination of a power
	conversion co	efficient for 10% of the active wells in the Basin by
	December 31,	2005. Colorado will also provide an annual tabulation for

1706 1707

each groundwater well that measures groundwater pumping by a totalizing 1683 flow meter, hours meter or power conversion coefficient that includes: the 1684 groundwater well permit number, location, reported hours, use, and 1685 irrigated acreage. 1686 1687 1688 Kansas - will provide an annual tabulation by each groundwater well that includes: water right number, groundwater pumping determined by a 1689 meter on each well (or group of wells in a manifold system) or by reported 1690 1691 hours of use and rate; location; system type (gravity, sprinkler, LEPA, drip, etc.); and irrigated acreage. Crop distribution will be provided on a 1692 county basis. 1693 1694 Nebraska – will provide an annual tabulation through the representative 1695 Natural Resource District (NRD) in Nebraska that includes: the well 1696 1697 registration number or other ID number; groundwater pumping determined by a meter on each well (or group of wells in a manifold system) or by 1698 reported hours of use and rate; wells will be identified by; location; system 1699 type (gravity, sprinkler, LEPA, drip, etc.); and irrigated acreage. Crop 1700 distribution will be provided on a county basis. 1701 1702 1703 **3.** Climate information: 1704 1705

Each State will tabulate and provide precipitation, temperature, relative humidity or dew point, and solar radiation for the following climate stations:

State	Identification	Name
Colorado	C050109	Akron 4 E
Colorado	C051121	Burlington
Colorado	C054413	Julesburg
Colorado	C059243	Wray
Kansas	C140439	Atwood 2 SW
Kansas	C141699	Colby 1SW
Kansas	C143153	Goodland
Kansas	C143837	Hoxie
Kansas	C145856	Norton 9 SSE
Kansas	C145906	Oberlin1 E
Kansas	C147093	Saint Francis
Kansas	C148495	Wakeeny
Nebraska	C250640	Beaver City
Nebraska	C250810	Bertrand
Nebraska	C252065	Culbertson
Nebraska	C252690	Elwood 8 S
Nebraska	C253365	Gothenburg
Nebraska	C253735	Hebron

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Nebraska	C253910	Holdredge
Nebraska	C254110	Imperial
Nebraska	C255090	Madrid
Nebraska	C255310	McCook
Nebraska	C255565	Minden
Nebraska	C256480	Palisade
Nebraska	C256585	Paxton
Nebraska	C257070	Red Cloud
Nebraska	C258255	Stratton
Nebraska	C258320	Superior
Nebraska	C258735	Upland
Nebraska	C259020	Wauneta 3 NW

1708							
1709							
1710	4. Crop Irrigation Re	4. Crop Irrigation Requirements:					
1711	Each State will tabulate	Each State will tabulate and provide estimates of crop irrigation requirement					
1712	information on a county	v format. Each State will provide the percentage of the					
1713	crop irrigation requirem	ent met by pumping; the percentage of groundwater					
1714	irrigated lands served b	y sprinkler or flood irrigation systems, the crop irrigation					
1715	requirement; crop distri	bution; crop coefficients; gain in soil moisture from winter					
1716	and spring precipitation	, net crop irrigation requirement; and/or other information					
1717	necessary to compute a	soil/water balance.					
1718							
1719							
1720	5. Streamflow Record	ls from State-Maintained Gaging Records:					
1721	Streamflow gaging reco	ords from the following State maintained gages will be					
1722	provided:						
1723							
1724	Station No	Name					
1725	00126700	Republican River near Trenton					
1726	06831500	Frenchman Creek near Imperial					
1727	06832500	Frenchman Creek near Enders					
1728	06835000	Stinking Water Creek near Palisade					
1729	06837300	Red Willow Creek above Hugh Butler Lake					
1730	06837500	Red Willow Creek near McCook					
1731	06841000	Medicine Creek above Harry Strunk Lake					
1732	06842500	Medicine Creek below Harry Strunk Lake					
1733	06844000	Muddy Creek at Arapahoe					
1734	06844210	Turkey Creek at Edison					
1735	06847000	Beaver Creek near Beaver City					
1736		Republican River at Riverton					
1737	06851500	Thompson Creek at Riverton					
1738	06852000	Elm Creek at Amboy					
1739		Republican River at the Superior-Courtland					

1740	Diversion Dam
1741	
1742	
1743	6. Platte River Reservoirs:
1744	The State of Nebraska will provide the end-of-month contents, inflow data, outflow
1745	data, area-capacity data, and monthly net evaporation, if available, from Johnson
1746	Lake; Elwood Reservoir; Sutherland Reservoir; Maloney Reservoir; and Jeffrey
1747	Lake.
1748	7. Water Administration Notification:
1749	The State of Nebraska will provide the following information that describes the
1750	protection of reservoir releases from Harlan County Lake and for the
1751	administration of water rights junior in priority to February 26, 1948:
1752	
1753	Date of notification to Nebraska water right owners to curtail their
1754	diversions, the amount of curtailment, and length of time for curtailment.
1755	The number of notices sent.
1756	The number of diversions curtailed and amount of curtailment in the Harlan
1757	County Lake to Guide Rock reach of the Republican River.
1758	
1759	
1760	8. Moratorium:
1761	Each State will provide a description of all new Wells constructed in the Basin
1762	Upstream of Guide Rock including the owner, location (legal description), depth
1763	and diameter or dimension of the constructed water well, casing and screen
1764	information, static water level, yield of the water well in gallons per minute or
1765	gallons per hour, and intended use of the water well.
1766	
1767	Designation whether the Well is a:
1768	
1769	a. Test hole;
1770	
1771	b. Dewatering Well with an intended use of one year or less;
1772	
1773	c. Well designed and constructed to pump fifty gallons per minute
1774	or less;
1//5	
1//6	d. Replacement Water Well, including a description of the Well that
1///	is replaced providing the information described above for new Wells and a
1//8	description of the historic use of the well that is replaced;
1790	Wall managemy to allowing an anomaly situation investigation
1701	e. well necessary to alleviate an emergency situation involving
1702	provision of water for numan consumption, including a brief description
1702	of the nature of the emergency situation and the amount of water intended to be numped by and the length of time of energy of the new Well.
1/03	to be pumped by and the length of time of operation of the new Well;

1784	
1785	f. Transfer Well, including a description of the Well that is transferred
1786	providing the information described above for new Wells and a description
1787	of the Historic Consumptive Use of the Well that is transferred;
1788	
1789	g. Well for municipal and/or industrial expansion of use;
1790	
1791	Wells in the Basin in Northwest Kansas or Colorado. Kansas and Colorado will
1792	provide the information described above for new Wells along with copies of any
1793	other information that is required to be filed with either State of local agencies under
1794	the laws, statutes, rules and regulations in existence as of April 30, 2002, and;
1795	Any changes in State law in the previous year relating to existing Moratorium.
1796	
1797	
1798	9. Non-Federal Reservoirs:
1799	Each State will conduct an inventory of Non Federal Reservoirs by December 31,
1800	2004, for inclusion in the annual Compact Accounting. The inventory shall
1801	include the following information: the location, capacity (in Acre-feet) and area
1802	(in acres) at the principal spillway elevation of each Non-Federal Reservoir. The
1803	States will annually provide any updates to the initial inventory of Non-Federal
1804	Reservoirs, including enlargements that are constructed in the previous year.
1805	
1806	Owners/operators of Non-Federal Reservoirs with 200 Acre-feet of storage
1807	capacity or greater at the principal spillway elevation will be required to provide an
1808	area- capacity survey from State-approved plans or prepared by a licensed
1809	professional engineer or land surveyor.
1810	
1811	
1812	10. Augmentation Projects:
1813	Each State will provide a description of the wells, measuring devices, conveyance
1814	structure(s), and other infrastructure to describe the physical characteristics, water
1815	diversions, and consumptive use associated with each project. The States will
1816	provide daily pumping data for each augmentation project on an annual basis.
1817	
1818	B. RRCA Groundwater Model Data Input Files
1819	
1820	
1821	1. Monthly groundwater pumping, surface water recharge, groundwater
1822	recharge, and precipitation recharge provided by county and indexed to the
1823	one square mile cell size.
1824	
1825	
1826	2. Potential Evapotranspiration rate is set as a uniform rate for all phreatophyte
1827	vegetative classes - the amount is X at Y climate stations and is interpolated

1828	spatially	using kriging.
1829		
1830		
1831		
1832		
1833		
1834		
1835		
1836 C	C. Inputs to RRO	CA Accounting
1837	-	
1838		
1839	1. Surface	Water Information
1840		
1841	a.	Streamflow gaging station records: obtained as preliminary USGS
1842		or Nebraska streamflow records, with adjustments to reflect a
1843		calendar year, at the following locations:
1844		
1845		Arikaree River at Haigler, Nebraska
1846		North Fork Republican River at Colorado-Nebraska state line
1847		Buffalo Creek near Haigler, Nebraska
1848		Rock Creek at Parks, Nebraska
1849		South Fork Republican River near Benkelman, Nebraska
1850		Frenchman Creek at Culbertson, Nebraska
1851		Red Willow Creek near Red Willow, Nebraska
1852		Medicine Creek below Harry Strunk Lake, Nebraska*
1853		Beaver Creek near Beaver City, Nebraska*
1854		Sappa Creek near Stamford, Nebraska
1855		Prairie Dog Creek near Woodruff, Kansas
1856		Courtland Canal at Nebraska-Kansas state line
1857		Republican River near Hardy, Nebraska
1858		Republican River at Superior-Courtland Diversion Dam near
1859		Guide Rock,
1860		Nebraska (new)*
1861		
1862	b.	Federal reservoir information: obtained from the United
1863		States Bureau of Reclamation:
1864		
1865		Daily free water surface evaporation, storage, precipitation,
1866		reservoir release information, and updated area-capacity
1867		tables.
1868		Federal Reservoirs:
1869		Bonny Reservoir
1870		Swanson Lake
1871		Harry Strunk Lake

1872		Hugh Butler Lake
1873		Enders Reservoir
1874		Keith Sebelius Lake
1875		Harlan County
1876		Lake Lovewell
1877		Reservoir
1878		
1879	с.	Non-federal reservoirs obtained by each state: an updated
1880		inventory of reservoirs that includes the location, surface area
1881		(acres), and capacity (in Acre-feet), of each non-federal reservoir
1882		with storage capacity of fifteen (15) Acre-feet or greater at the
1883		principal spillway elevation. Supporting data to substantiate the
1884		average surface water areas that are different than the presumptive
1885		average annual surface area may be tendered by the offering State.
1886		
1887	d.	Diversions and related data from USBR
1888		
1889		Irrigation diversions by canal, ditch, and pumping station
1890		that irrigate more than two (2) acres
1891		Diversions for non-irrigation uses greater than 50 Acre-feet
1892		Farm Deliveries
1893		Wasteway measurements
1894		Irrigated acres
1895		
1896	e.	Diversions and related data – from each respective State
1897		
1898		Irrigation diversions by canal, ditch, and pumping station
1899		that irrigate more than two (2) acres
1900		Diversions for non-irrigation uses greater than 50 Acre-feet
1901		Wasteway measurements, if available
1902		
1903		
1904	2. Ground	dwater Information
1905	(From the R	RCA Groundwater model as output files as needed for the accounting
1906	procedures)	
1907		
1908	a.	Imported water - mound credits in amount and time that occur in
1909		defined streamflow points/reaches of measurement or compliance
1910		– ex: gaging stations near confluence or state lines
	b.	Groundwater depletions to streamflow (above points of measurement or compliance – ex: gaging stations near confluence or state lines)

Accounting Procedures and Reporting Requirements Revised August 21, 2020

3. Summary

The aforementioned data will be aggregated by Sub-basin as needed for RRCA accounting.

D. Verification

1. Documentation to be Available for Inspection Upon Request

- a. Well permits/ registrations database
- b. Copies of well permits/ registrations issued in calendar year
- c. Copies of surface water right permits or decrees
- d. Change in water right/ transfer historic use analyses
- e. Canal, ditch, or other surface water diversion records
- f. Canal, ditch, or other surface water measurements
- g. Reservoir storage and release records
- h. Irrigated acreage
- i. Augmentation well pumping and delivery records

2. Site Inspection

- a. Accompanied reasonable and mutually acceptable schedule among representative state and/or federal officials.
- b. Unaccompanied inspection parties shall comply with all laws and regulations of the State in which the site inspection occurs.

Table 1: Annual Virgin and Computed Water Supply, Allocations and Computed BeneficialConsumptive Uses by State, Main Stem and Sub-basin

Designated Drainage Basin	Col. 1: Virgin Water	Col. 2: Computed Water Supply	Col. 3: Allocations			Col. 4: Computed Beneficial Consumptive Use			
	Supply	11.7	Colorado	Nebraska	Kansas	Unallocated	Colorado	Nebraska	Kansas
North Fork in Colorado									
Arikaree									
Buffalo									
Rock									
South Fork of Republican River									
Frenchman									
Driftwood									
Red Willow									
Medicine									
Beaver									
Sappa									
Prairie Dog									
North Fork of Republican River in Nebraska and Main Stem									
Total All Basins									
North Fork Of Republican River in Nebraska and Mainstem Including Unallocated Water									
Total									

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Designated Drainage Basin	Virgin Water Supply	Colorado Allocation	% of Total Drainage Basin Supply	Kansas Allocation	% of Total Drainage Basin Supply	Nebraska Allocation	% of Total Drainage Basin Supply	Unallo- cated	% of Total Drainage Basin Supply
North Fork - CO	44,700	10,000	22.4			11,000	24.6	23,700	53.0
Arikaree River	19,610	15,400	78.5	1,000	5.1	3,300	16.8	-90	-0.4
Buffalo Creek	7,890					2,600	33.0	5,290	67.0
Rock Creek	11,000					4,400	40.0	6,600	60.0
South Fork	57,200	25,400	44.4	23,000	40.2	800	1.4	8,000	14.0
Frenchman Creek	98,500					52,800	53.6	45,700	46.4
Driftwood Creek	7,300			500	6.9	1,200	16.4	5,600	76.7
Red Willow Creek	21,900					4,200	19.2	17,700	80.8
Medicine Creek	50,800					4,600	9.1	46,200	90.9
Beaver Creek	16,500	3,300	20.0	6,400	38.8	6,700	40.6	100	0.6
Sappa Creek	21,400			8,800	41.1	8,800	41.1	3,800	17.8
Prairie Dog Creek	27,600			12,600	45.7	2,100	7.6	12,900	46.7
Sub-total Tributaries	384,400							175,500	
Main Stem + Blackwood Creek	94,500								
Main Stem + Unallocated	270,000			138,000	51.1	132,000	48.9		
Total	478,900	54,100		190,300		234,500			

Table 2: Original Compact Virgin Water Supply and Allocations

Table 3A: Table to Be Used to Calculate Colorado's Five-Year Running Average Allocation and Computed Beneficial Consumptive Use for Determining Compact Compliance for Averaging Periods with No Water Short Year Designations Pursuant to Section III.J.

Colorado				
	Col. 1	Col. 2	Col. 3	Col. 4
Year	Allocation	Computed Beneficial Consumptive	Imported Water Supply Credit and CORWS Credit	Difference between Allocation and the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit and CORWS Credit Col 1 – (Col 2- Col 3)
Year t=-4				
Year t=-3				
Year t=-2				
Year t=-1				
Current Year t=0				
Average				

Table 3B. Table to Be Used to Calculate Kansas's Five-Year Running Average Allocation and Computed Beneficial Consumptive Use for Determining Compact Compliance

Kansas								
	Col. 1	Col. 2	Col. 3	Col. 4				
Year	Allocation	Computed Beneficial Consumptive	Imported Water Supply Credit	Difference between Allocation and the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit Col 1 – (Col 2- Col 3)				
Year T=-4								
Year T=-3								
Year T=-2								
Year T=-1								
Current Year T=0								
Average								

Table 3C. Table to Be Used to Calculate Nebraska's Five-Year Running Average Allocation and Computed Beneficial Consumptive Use for Determining Compact Compliance

Nebraska				
	Col. 1	Col. 2	Col. 3	Col. 4
Year	Allocation	Computed Beneficial Consumptive	Imported Water Supply Credit and NERWS Credit	Difference between Allocation and the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit and NERWS Credit Col 1 – (Col 2- Col 3)
Year T=-4				
Year T=-3				
Year T=-2				
Year T=-1				
Current Year T=0				
Average				

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Table 4A: Colorado Compliance with the Sub-basin Non-impairment Requirement

	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6
Sub-basin	Colorado Sub- basin Allocation (5-year running average)	Unallocated Supply (5-year running average)	Credits from Imported Water Supply and CORWS Credit (5- year running average)	Total Supply Available (5-year running average)	Colorado Computed Beneficial Consumptive Use (5- year running average)	Difference Between Available Supply and Computed Beneficial Consumptive Use (5- year running average)
North Fork Republican River Colorado						
Arikaree River			N/A			
South Fork Republican River			N/A			
Beaver Creek			N/A			

Note: In Table 4A, the CORWS Credit in Col 3 can only be applied to the North Fork Republican River Colorado. Table 4A is left unpopulated pursuant to the 2016 Colorado CCP/SF Resolution, paragraph E.

Table 4B: Kansas Compliance with the Sub-basin Non-impairment Requirement

	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7
Sub-basin	Kansas Sub-basin Allocation (5-year running average)	Unallocated Supply (5-year running average)	Unused Allocation from Colorado (5- year running average)	Credits from Imported Water Supply (5-year running average)	Total Supply Available = Col 1+ Col 2+ Col 3 + Col 4 (5-year running average)	Kansas Computed Beneficial Consumptive Use (5-year running average)	Difference Between Available Supply and Computed Beneficial Consumptive Use = Col 5 – Col 6 (5-year running average)
Arikaree River							
South Fork Republican River							
Driftwood Creek							
Beaver Creek							
Sappa Creek							
Prairie Dog Creek							

Table 5A: Table to Be Used to Calculate Colorado's Compact Compliance for Averaging Periods with Water Short Year Designations Pursuant to Section III.J.

Colorado							
	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7
Year	Is the year Water Short Pursuant to III.J?* (Yes or No)	Statewide Allocation	Beaver Creek Reduction Pursuant to Table 5F	Allocation – Beaver Creek Reduction (Col. 2 – Col. 3)	Computed Beneficial Consumptive (excluding the Beaver Creek Sub-basin)	Imported Water Supply Credit – IWS Beaver Creek <u>+</u> <u>CORWS</u> <u>Credit</u>	Difference between Allocation and the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit <u>and</u> <u>CORWS Credit</u> (Col. 4 – Col. 5 + Col. 6)
Year T=-4							
Year T=-3							
Year T=-2							
Year T=-1							
Current Year T=0 Average							

* If the Column 1 entry is "No", then the Beaver Creek Reduction in Column 3 will be zero for that year.

RRCA Engineering Committee Report for 2020

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Kansas							
Year	Allocation				Computed Beneficial Consumptive Use	Imported Water Supply Credit	Difference Between Allocation and the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit
Column	1 Sum Sub- basins	2 Kansas's Share of the Unallocated Supply	3 Kansas' Share of Unused Colorado Allocation	4 Total Col 1 + Col 2 + Col 3	5	6	7 Col 4 – (Col 5 – Col 6)
Previous Year							
Year Average							

Note: In Table 5B, Column 3 values are the sum of Kansas' Share of Unused Colorado Allocations for the sub-basins listed in Table 4B. Kansas' share of the Unused Colorado Allocation is 51.1%.

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Table 5C: Nebraska Compliance During Water-Short Year Administration

	Nebraska								
Year	Allocation				Computed Use	d Beneficial C	onsumptive	Imported Water Supply Credit and NERWS Credit	DifferenceBetween Allocation and the Computed Beneficial ConsumptiveUse offset by Imported Water Supply Credit Above Guide Rock and NERWS Credit
Column	Col 1 State Wide Allocation	Col 2 Allocation below Guide Rock	Col 3 State Wide Allocation above Guide Rock	Col 4 Nebraska's Share of Unused Colorado Allocation	Col 5 State Wide CBCU	Col 6 CBCU below Guide Rock	Col 7 State Wide CBCU above Guide Rock	Col 8 Credits above Guide Rock	Col 9 Col 3 + Col 4 - (Col 7 - Col 8)
Previous Year									
Current Year									
Average									

Note:

In Table 5C, Column 4 values are the sum of Nebraska's Share of Unused Colorado Allocations for the sub-basins listed in Table 4B and the North Fork Sub-basin. Nebraska's share of the Unused Colorado Allocation is 48.9%.

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Table 5D: Nebraska Compliance Under an Alternative Water-Short Year Administration Plan

Year	Allocation			Comput	ed Beneficial Cons	sumptive Use	Imported Water Supply Credit and NERWS Credit	Difference Between Allocation and the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit Above Guide Rock and NERWS Credit	
Column	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9
	State	Allocation	State Wide	Nebraska's	State	CBCU	State Wide	Credits above	Col 3 + Col 4 - (Col 7 - Col
	Wide	below Guide	Allocation	Share of	Wide	below	CBCU	Guide Rock	Col 8)
	Allocation	Rock	above	Unused	CBCU	Guide	above Guide		
			Rock	Allocation		NOCK	ROCK		
Y ear = -2									
Year = -1									
Current Year									
Three-									
Year									
Average	Sum of Dur) Difference						
	Sum of Previous Two-year Difference								
	Expected Decrease in CBCU Under Plan								

Note: In Table 5D, Column 4 values are the sum of Nebraska's Share of Unused Colorado Allocations for the sub-basins listed in Table 4B and the North Fork Sub-basin. Nebraska's share of the Unused Colorado Allocation is 48.9%.

Accounting Procedures and Reporting Requirements Revised August 21, 2020

Year	Sum of Nebraska Sub-basin Allocations	Sum of Nebraska's Share of Sub- basin Unallocated Supplies	Total Available Water Supply for Nebraska	Computed Beneficial Consumptive Use	Imported Water Supply Credit and NERWS Credit generated in a Sub-basin	Difference between Allocation And the Computed Beneficial Consumptive Use offset by Imported Water Supply Credit and NERWS Credit
	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6
			Col 1 + Col 2			Col 3 -(Col 4-Col 5)
Previous Year						
Current Year						
Average						

Table 5F: Colorado's Beaver Creek Reduction During Water-Short Years

Colorado		
Water Short Year (WSY) Pursuant to III.J	Beaver Creek Allocation	Current Accounting Year Reduction = Average of last 5 WSY Beaver Creek Allocations
	Col. 1	Col. 2
Fifth Most Recent WSY		
Fourth Most Recent WSY		
Third Most Recent WSY		
Second Most Recent WSY		
Most Recent* WSY		Average of Col. 1

*Most Recent WSY prior to the current accounting year.

Example calculation for Table 5F

Colorado		
Water Short Year Pursuant to III.J	Beaver Creek Allocation	Reduction = Average of last 5 WSY Beaver Creek Allocations
	Col. 1	Col. 2
2002	770	
2003	260	
2004	360	
2005	910	
2006	1420	
2007	2320	744
2013	1130	1054
2014	1250	1228
2015	2130	1406
2016	2520	1650

Basin Map Attached to Compact that Shows the Streams and the Basin Boundaries

Line Diagram of Designated Drainage Basins Showing Federal Reservoirs and Sub-basin Gaging Stations

Map Showing Sub-basins, Streams, and the Basin Boundaries

Attachment 1: Sub-basin Flood Flow Thresholds

Sub-basin	Sub-basin Flood Flow Threshold Acre-feet per Year ⁷
Arikaree River	16,400
North Fork of Republican River	33,900
Buffalo Creek	4,800
Rock Creek	9,800
South Fork of Republican River	30,400
Frenchman Creek	51,900
Driftwood Creek	9,400
Red Willow Creek	15,100
Medicine Creek	55,100
Beaver Creek	13,900
Sappa Creek	26,900
Prairie Dog	15,700

⁷ Flows considered to be Flood Flows are flows in excess of the 94% flow based on a flood frequency analysis for the years 1971-2000. The Gaged Flows are measured after depletions by Beneficial Consumptive Use and change in reservoir storage.

Attachment 2: Description of the Consensus Plan for Harlan County Lake

The Consensus Plan for operating Harlan County Lake was conceived after extended discussions and negotiations between Reclamation and the Corps. The agreement shaped at these meetings provides for sharing the decreasing water supply into Harlan County Lake. The agreement provides a consistent procedure for: updating the reservoir elevation/storage relationship, sharing the reduced inflow and summer evaporation, and providing a January forecast of irrigation water available for the following summer.

During the interagency discussions the two agencies found agreement in the following areas:

- The operating plan would be based on current sediment accumulation in the irrigation pool and other zones of the project.
- Evaporation from the lake affects all the various lake uses in proportion to the amount of water in storage for each use.
- During drought conditions, some water for irrigation could be withdrawn from the sediment pool.
- Water shortage would be shared between the different beneficial uses of the project, including fish, wildlife, recreation and irrigation.

To incorporate these areas of agreement into an operation plan for Harlan County Lake, a mutually acceptable procedure addressing each of these items was negotiated and accepted by both agencies.

1. Sediment Accumulation.

The most recent sedimentation survey for Harlan County project was conducted in 1988, 37 years after lake began operation. Surveys were also performed in 1962 and 1972; however, conclusions reached after the 1988 survey indicate that the previous calculations are unreliable. The 1988 survey indicates that, since closure of the dam in 1951, the accumulated sediment is distributed in each of the designated pools as follows:

Flood Pool	2,387 Acre-feet
Irrigation Pool	4,853 Acre-feet
Sedimentation Pool	33,527 Acre-feet

To insure that the irrigation pool retained 150,000 Acre-feet of storage, the bottom of the irrigation pool was lowered to 1,932.4 feet, msl, after the 1988 survey.

To estimate sediment accumulation in the lake since 1988, we assumed similar conditions have occurred at the project during the past 11 years. Assuming a consistent rate of deposition since 1988, the irrigation pool has trapped an additional 1,430 Acre-feet.

Republican River Compact Administration Accounting Procedures and Reporting Requirements Revised August 21, 2020

A similar calculation of the flood control pool indicates that the flood control pool has captured an additional 704 Acre-feet for a total of 3,090 Acre-feet since construction.

The lake elevations separating the different pools must be adjusted to maintain a 150,000acre-foot irrigation pool and a 500,000-acre-foot flood control pool. Adjusting these elevations results in the following new elevations for the respective pools (using the 1988 capacity tables).

Top of Irrigation Pool	1,945.70 feet, msl
Top of Sediment Pool	1,931.75 feet, msl

Due to the variability of sediment deposition, we have determined that the elevation capacity relationship should be updated to reflect current conditions. We will complete a new sedimentation survey of Harlan County Lake this summer, and new area capacity tables should be available by early next year. The new tables may alter the pool elevations achieved in the Consensus Plan for Harlan County Lake.

2. Summer Evaporation.

Evaporation from a lake is affected by many factors including vapor pressure, wind, solar radiation, and salinity of the water. Total water loss from the lake through evaporation is also affected by the size of the lake. When the lake is lower, the surface area is smaller and less water loss occurs. Evaporation at Harlan County Lake has been estimated since the lake's construction using a Weather Service Class A pan which is 4 feet in diameter and 10 inches deep. We and Reclamation have jointly reviewed this information and assumed future conditions to determine an equitable method of distributing the evaporation loss from the project between irrigation and the other purposes.

During those years when the irrigation purpose expected a summer water yield of 119,000 Acre-feet or more, it was determined that an adequate water supply existed and no sharing of evaporation was necessary. Therefore, evaporation evaluation focused on the lower pool elevations when water was scarce. Times of water shortage would also generally be times of higher evaporation rates from the lake.

Reclamation and we agreed that evaporation from the lake during the summer (June through September) would be distributed between the irrigation and sediment pools based on their relative percentage of the total storage at the time of evaporation. If the sediment pool held 75 percent of the total storage, it would be charged 75 percent of the evaporation. If the sediment pool held 50 percent of the total storage, it would be charged 50 percent of the evaporation would be charged to the sediment pool.

Due to downstream water rights for summer inflow, neither the irrigation nor the sediment pool is credited with summer inflow to the lake. The summer inflows would be

assumed passed through the lake to satisfy the water right holders. Therefore, Reclamation and we did not distribute the summer inflow between the project purposes.

As a result of numerous lake operation model computer runs by Reclamation, it became apparent that total evaporation from the project during the summer averaged about 25,000 Acrefeet during times of lower lake elevations. These same models showed that about 20 percent of the evaporation should be charged to the irrigation pool, based on percentage in storage during the summer months. About 20 percent of the total lake storage is in the irrigation pool when the lake is at elevation 1,935.0 feet, msl. As a result of the joint study, Reclamation and we agreed that the irrigation pool would be credited with 20,000 Acre-feet of water during times of drought to share the summer evaporation loss.

Reclamation and we further agreed that the sediment pool would be assumed full each year. In essence, if the actual pool elevation were below 1,931.75 feet, msl, in January, the irrigation pool would contain a negative storage for the purpose of calculating available water for irrigation, regardless of the prior year's summer evaporation from sediment storage.

3. Irrigation withdrawal from sediment storage.

During drought conditions, occasional withdrawal of water from the sediment pool for irrigation is necessary. Such action is contemplated in the Field Working Agreement and the Harlan County Lake Regulation Manual: "Until such time as sediment fully occupies the allocated reserve capacity, it will be used for irrigation and various conservation purposes, including public health, recreation, and fish and wildlife preservation."

To implement this concept into an operation plan for Harlan County Lake, Reclamation and we agreed to estimate the net spring inflow to Harlan County Lake. The estimated inflow would be used by the Reclamation to provide a firm projection of water available for irrigation during the next season.

Since the construction of Harlan County Lake, inflows to the lake have been depleted by upstream irrigation wells and farming practices. Reclamation has recently completed an in-depth study of these depleted flows as a part of their contract renewal process. The study concluded that if the current conditions had existed in the basin since 1931, the average spring inflow to the project would have been 57,600 Acre-feet of water. The study further concluded that the evaporation would have been 8,800 Acre-feet of water during the same period. Reclamation and we agreed to use these values to calculate the net inflow to the project under the current conditions.

In addition, both agencies also recognized that the inflow to the project could continue to decrease with further upstream well development and water conservation farming. Due to these concerns, Reclamation and we determined that the previous 5-year inflow values would be averaged each year and compared to 57,600 Acre-feet. The inflow estimate for Harlan County Lake would be the smaller of these two values.
Republican River Compact Administration

The estimated inflow amount would be used in January of each year to forecast the amount of water stored in the lake at the beginning of the irrigation season. Based on this forecast, the irrigation districts would be provided a firm estimate of the amount of water available for the next season. The actual storage in the lake on May 31 would be reviewed each year. When the actual water in storage is less than the January forecast, Reclamation may draw water from sediment storage to make up the difference.

4. Water Shortage Sharing.

A final component of the agreement involves a procedure for sharing the water available during times of shortage. Under the shared shortage procedure, the irrigation purpose of the project would remove less water then otherwise allowed and alleviate some of the adverse effects to the other purposes. The procedure would also extend the water supply during times of drought by "banking" some water for the next irrigation season. The following graph illustrates the shared shortage releases.

5. Calculation of Irrigation Water Available

Each January, the Reclamation would provide the Bostwick irrigation districts a firm estimate of the quantity of water available for the following season. The firm estimate of water available for irrigation would be calculated by using the following equation and shared shortage adjustment:

Republican River Compact Administration

Storage + Summer Sediment Pool Evaporation + Inflow – Spring Evaporation=Maximum Irrigation Water Available

The variables in the equation are defined as:

- Maximum Irrigation Water Available. Maximum irrigation supply from Harlan County Lake for that irrigation season.
- Storage. Actual storage in the irrigation pool at the end of December. The sediment pool is assumed full. If the pool elevation is below the top of the sediment pool, a negative irrigation storage value would be used.
- Inflow. The inflow would be the smaller of the past 5-year average inflow to the project from January through May, or 57,600 Acre-feet.
- Spring Evaporation. Evaporation from the project would be 8,800 Acre-feet which is the average January through May evaporation.
- Summer Sediment Pool Evaporation. Summer evaporation from the sediment pool during June through September would be 20,000 Acre-feet. This is an estimate based on lower pool elevations, which characterize the times when it would be critical to the computations.
 - 6. Shared Shortage Adjustment

To ensure that an equitable distribution of the available water occurs during short-term drought conditions, and provide for a "banking" procedure to increase the water stored for subsequent years, a shared shortage plan would be implemented. The maximum water available for irrigation according to the above equation would be reduced according to the following table. Linear interpolation of values will occur between table values.

Shared Shortage Adjustment Table

Irrigation Water Av (Acre-feet)	ailable Irrigation Water Released (Acre-feet)
0	0
17,000	15,000
34,000	30,000
51,000	45,000
68,000	60,000
85,000	75,000
102,000	90,000
119,000	100,000
136,000	110,000
153,000	120,000
170,000	130,000

Republican River Compact Administration

7. Annual Shutoff Elevation for Harlan County Lake

The annual shutoff elevation for Harlan County Lake would be estimated each January and finally established each June.

The annual shutoff elevation for irrigation releases will be estimated by Reclamation each January in the following manner:

- 1. Estimate the May 31 Irrigation Water Storage (IWS) (Maximum 150,000 Acre-feet) by taking the December 31 irrigation pool storage plus the January-May inflow estimate (57,600 Acre-feet or the average inflow for the last 5year period, whichever is less) minus the January-May evaporation estimate (8,800 Acre-feet).
- 2. Calculate the estimated Irrigation Water Available, including all summer evaporation, by adding the Estimated Irrigation Water Storage (from item 1) to the estimated sediment pool summer evaporation (20,000 AF).
- 3. Use the above Shared Shortage Adjustment Table to determine the acceptable Irrigation Water Release from the Irrigation Water Available.
- 4. Subtract the Irrigation Water Release (from item 3) from the Estimated IWS (from item 1). The elevation of the lake corresponding to the resulting irrigation storage is the Estimated Shutoff Elevation. The shutoff elevation will not be below the bottom of the irrigation pool if over 119,000 AF of water is supplied to the districts, nor below 1,927.0 feet, msl. If the shutoff elevation is below the irrigation pool, the maximum irrigation release is 119,000 AF.

The annual shutoff elevation for irrigation releases would be finalized each June in accordance with the following procedure:

- 1. Compare the estimated May 31 IWS with the actual May 31 IWS.
- 2. If the actual end of May IWS is less than the estimated May IWS, lower the shutoff elevation to account for the reduced storage.
- 3. If the actual end of May IWS is equal to or greater than the estimated end of May IWS, the estimated shutoff elevation is the annual shutoff elevation.
- 4. The shutoff elevation will never be below elevation 1,927.0 feet, msl, and will not be below the bottom of the irrigation pool if more than 119,000 Acre-feet of water is supplied to the districts.

Attachment 3: Inflows to Harlan County Lake 1993 Level of Development

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1931 1932	10.2 6.8	10.8 16.6	13.4 18.5	5.0 4.6	18.8 3.8	15.8 47.6	4.3 3.8	1.8 2.8	1.8 4.8	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.1 \\ 0.0 \end{array}$	0.1 0.4	82.1 109.7
1933	0.4	0.0	3.9	30.2	31.0	5.4	1.8	0.0	10.4	0.0	2.6	5.5	91.2
1934	2.1	0.0	3.2	1.8	0.7	7.3	0.8	0.0	1.3	0.0	2.2	0.0	19.4
1935	0.3	0.1	0.7	4.2	0.8	389.3	6.1	19.1	26.1	2.4	5.2	0.9	455.2
1936	0.3	0.0	11.9	0.0	35.9	4.7	0.4	0.0	1.8	0.0	1.6	3.8	60.4
1937	4.8	12.9	6.0	2.5	0.0	12.6	6.3	6.9	2.4	0.0	0.0	12.4	66.8
1938	9.9	7.8	8.7	10.4	18.7	8.6	7.3	7.8	4.9	0.2	0.0	4.7	89.0
1939	2.7	7.5	9.6	12.2	6.6	13.3	5.0	4.1	0.0	0.0	0.0	0.0	61.0
1940	0.0	0.0	12.2	5.2	4.6	23.7	2.8	3.2	0.0	3.6	0.0	1.4	56.7
1941	0.0	10.6	10.6	7.7	17.2	67.1	28.9	19.7	14.9	8.3	6.7	7.1	198.8
1942	3.3	10.6	0.5	34.1	30.8	83.9	11.7	10.9	36.5	3.1	8.7	0.3	234.4
1943	1.2	11.2	14.6	31.4	4.7	28.3	4.8	0.3	0.9	0.0	0.0	11.8	109.2
1944	0.1	4.3	9.0	43.1	31.9	63.9	26.6	15.4	0.5	0.3	3.0	4.5	202.6
1945	4.3	7.8	5.7	9.5	4.1	53.5	5.0	0.9	1.5	5.0	6.0	6.3	109.6
1946	5.9	11.2	9.3	4.9	7.0	3.1	1.6	11.4	28.1	129.9	25.0	12.1	249.5
1947	1.1	3.2	10.4	8.2	11.9	195.4	22.3	5.9	2.9	0.2	0.3	0.3	262.1
1948	6.2	9.8	24.1	5.4	0.2	39.8	13.5	6.8	4.2	0.0	0.1	0.1	110.2
1949	2.0	1.5	25.2	16.3	49.0	57.4	9.2	5.5	2.1	3.0	2.8	0.3	174.3
1950	0.3	5.7	10.8	10.9	28.9	10.1	12.7	9.3	7.8	7.2	3.8	3.1	110.6
1951	3.8	3.4	7.1	5.3	42.0	39.9	42.1	10.1	36.0	15.5	14.8	8.9	228.9
1952	16.4	21.4	26.3	23.8	34.6	4.0	9.3	3.1	1.5	11.7	4.3	0.1	156.5
1953	1.8	4.6	5.3	3.3	15.1	9.5	1.8	0.2	0.0	0.0	2.8	0.1	44.5
1954	1.0	6.8	1.9	3.2	7.1	2.4	0.0	1.2	0.0	0.0	0.0	0.0	23.6
1955	0.0	4.0	6.3	4.8	2.9	6.4	2.7	0.0	1.4	0.0	0.0	0.0	28.5
1956	1.6	3.4	2.9	2.4	1.3	1.5	0.0	0.6	0.0	0.0	0.0	0.0	13.7
1957	0.0	4.1	6.2	12.8	3.5	62.4	21.3	1.2	2.0	3.4	4.5	4.7	126.1
1958	0.8	3.0	14.2	14.0	18.7	1.3	3.4	2.2	0.0	0.4	0.0	0.6	58.6
1959	1.9	15.4	16.4	8.5	13.6	4.2	1.4	1.2	0.0	4.3	1.0	4.5	72.4
1960	1.4	12.3	71.4	23.9	21.7	53.7	14.1	3.2	0.0	0.0	0.2	2.8	204.7
1961	2.3	6.4	7.7	7.4	26.5	24.0	7.2	4.9	0.0	2.3	4.8	1.7	95.2

BASELINE RUN - 1993 LEVEL INFLOW TO HARLAN COUNTY RESERVOIR

Attachment 3: Inflows to Harlan County Lake 1993 Level of Development

DASELL		JJJ LL VLL							~~~	~~~			
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1962	4.5	9.1	16.2	9.9	14.4	42.6	41.6	21.1	2.3	8.7	8.3	5.7	184.4
1963	3.4	18.2	18.2	15.0	12.7	14.7	3.4	6.1	8.7	0.8	5.3	1.8	108.3
1964	5.4	7.6	8.3	8.4	9.9	11.9	7.2	6.5	2.4	1.9	1.4	2.3	73.2
1965	6.0	8.1	11.1	12.8	32.8	40.0	22.9	6.5	37.2	53.7	19.5	11.0	261.6
1966	8.9	21.4	15.7	11.4	12.0	34.7	12.4	2.5	3.5	5.4	6.8	5.7	140.4
1967	7.2	11.5	11.5	12.9	9.1	75.3	43.7	15.3	4.4	7.3	6.9	5.4	210.5
1968	3.9	10.2	8.5	11.6	10.8	12.5	3.1	2.7	1.6	2.0	4.3	3.4	74.6
1969	4.2	10.8	24.5	15.1	18.9	17.5	17.0	12.6	16.6	9.2	11.8	9.9	168.1
1970	3.5	8.7	8.5	10.5	11.1	7.7	4.6	3.2	0.5	3.3	4.7	4.5	70.8
1971	4.1	10.3	12.4	12.8	18.3	7.2	8.4	6.2	1.9	4.2	7.3	7.1	100.2
1972	5.5	8.1	9.2	8.3	14.8	8.5	6.5	4.4	0.1	2.9	7.6	4.1	80.0
1973	11.4	14.2	19.0	16.2	17.4	20.9	9.1	1.9	8.4	19.6	11.9	13.2	163.2
1974	13.2	13.4	12.0	14.3	15.4	17.2	5.5	0.0	0.0	0.0	4.9	5.5	101.4
1975	7.2	8.2	13.6	14.8	12.0	48.1	11.6	7.4	0.1	3.0	6.2	7.3	139.5
1976	7.0	10.2	10.1	16.0	12.1	3.5	2.2	1.8	0.9	1.0	3.2	3.1	71.1
1977	4.4	9.6	12.9	21.2	31.5	12.1	5.9	1.9	10.6	4.1	5.5	5.3	125.0
1978	5.0	6.5	20.6	12.9	11.8	3.8	0.0	1.0	0.0	0.0	0.3	1.6	63.5
1979	1.3	7.6	21.5	18.8	15.9	5.4	10.4	10.6	1.6	0.9	3.6	6.2	103.8
1980	5.7	9.3	11.6	15.2	10.4	2.1	2.5	0.0	0.0	0.0	2.5	2.2	61.5
1981	5.5	6.0	11.6	14.9	22.5	6.4	11.5	16.3	4.3	2.5	6.7	6.2	114.4
1982	5.3	12.5	17.9	14.3	26.8	27.1	8.9	2.7	0.0	6.5	6.3	15.5	143.8
1983	6.5	9.7	27.2	16.4	41.4	74.2	10.7	7.6	3.8	3.1	6.7	5.2	212.5
1984	6.8	14.6	17.2	32.9	40.6	15.5	8.1	4.5	0.0	5.5	4.8	6.2	156.7
1985	6.9	14.1	13.6	11.9	27.4	9.9	10.0	2.0	6.0	8.5	5.6	5.8	121.7
1986	9.1	9.4	12.2	11.7	34.3	13.0	13.5	4.6	3.3	5.9	5.4	7.1	129.5
1987	5.9	9.2	19.7	24.1	24.3	11.7	19.0	5.7	2.3	2.7	8.2	7.0	139.8
1988	6.2	13.7	11.6	15.2	15.2	7.0	17.9	10.4	0.6	2.0	5.9	5.4	111.1
1989	5.4	5.9	10.5	9.1	11.4	11.8	14.0	6.2	0.2	3.1	3.1	3.5	84.2
1990	6.6	7.7	13.2	9.7	15.5	1.4	4.3	10.7	0.6	3.2	2.0	2.7	77.6
1991	2.4	8.0	9.0	10.6	15.2	3.9	1.9	0.5	0.0	0.0	2.7	4.8	59.0
1992	8.0	8.8	12.7	8.5	4.5	6.1	6.5	9.4	2.4	6.9	6.7	5.2	85.7
1993	5.2	14.4	71.6	22.7	21.0	17.0	68.0	37.5	23.3	16.8	30.1	17.7	345.3

BASELINE RUN - 1993 LEVEL INFLOW TO HARLAN COUNTY RESERVOIR

Republican River Compact Administration

Accounting Procedures and Reporting Requirements

	Revised	August 2	21 20	20
--	---------	----------	-------	----

Avg	4.5	8.8	14.1	13.0	17.2	30.6	11.0	6.2	5.4	6.3	5.0	4.7	126.8
-----	-----	-----	------	------	------	------	------	-----	-----	-----	-----	-----	-------

Attachment 4: Evaporation Loss Harlan County Lake 1993 Level of Development

BASELINE - 1993 LEVEL FLOWS - HARLAN COUNTY EVAPORATION

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1931	0.7	0.9	1.6	2.9	4.2	7.4	6.9	5.2	2.7	2.1	1.2	0.4	36.2
1932	0.6	0.8	1.5	2.7	4.1	5.0	6.8	5.0	2.7	2.1	1.2	0.4	32.9
1933	0.6	0.8	1.4	2.5	3.8	7.8	6.1	4.2	2.7	2.1	1.2	0.4	33.6
1934	0.6	0.8	1.4	2.4	4.5	6.5	8.0	6.2	2.7	2.0	1.2	0.4	36.7
1935	0.6	0.8	1.3	2.3	2.2	3.6	9.7	6.2	3.1	2.5	1.4	0.5	34.2
1936	0.7	0.9	1.6	2.9	5.5	6.8	8.7	6.5	2.7	2.1	1.2	0.4	40.0
1937	0.6	0.8	1.4	2.5	3.6	4.0	6.2	6.5	2.7	2.1	1.2	0.4	32.0
1938	0.6	0.9	1.5	2.7	3.4	4.9	6.5	5.7	2.7	2.1	1.2	0.4	32.6
1939	0.6	0.8	1.4	2.6	4.3	4.9	6.8	4.6	2.7	2.1	1.2	0.4	32.4
1940	0.6	0.8	1.4	2.4	3.5	5.0	6.5	4.6	2.7	2.1	1.2	0.4	31.2
1941	0.6	0.8	1.4	2.5	3.9	4.2	6.7	5.3	2.8	2.1	1.3	0.5	32.1
1942	0.6	0.9	1.5	2.8	4.0	5.2	8.3	5.1	3.2	2.5	1.5	0.5	36.1
1943	0.7	1.0	1.8	3.2	4.3	5.7	7.9	6.3	2.7	2.1	1.2	0.4	37.3
1944	0.6	0.8	1.4	2.7	4.2	5.3	7.0	5.8	3.5	2.6	1.5	0.5	35.9
1945	0.7	1.0	1.8	3.1	3.8	3.0	6.7	5.7	2.9	2.2	1.3	0.5	32.7
1946	0.6	0.9	1.6	2.8	3.5	5.1	5.6	4.4	2.9	2.7	1.8	0.6	32.5
1947	1.0	1.5	2.9	3.2	3.4	-1.2	5.8	5.3	3.7	1.7	0.5	0.1	27.9
1948	0.8	0.7	1.5	3.6	3.1	2.4	4.2	4.7	3.0	2.7	0.8	0.3	27.8
1949	0.1	0.9	0.7	1.8	1.1	0.7	6.5	4.1	3.1	1.7	1.5	0.4	22.6
1950	0.7	0.1	0.8	2.8	2.0	5.6	0.8	2.8	4.5	2.3	1.6	0.6	24.6
1951	0.5	0.2	2.1	0.7	-0.1	1.9	3.5	4.1	0.4	3.1	2.2	0.9	19.5
1952	1.1	1.2	1.9	2.5	5.2	6.2	1.5	3.4	3.6	2.9	1.1	-0.1	30.5
1953	0.5	1.0	1.5	2.9	4.7	4.5	4.6	6.6	5.3	3.3	0.1	0.0	35.0
1954	0.7	0.6	2.2	3.6	0.3	4.9	6.7	1.6	3.6	1.6	1.5	0.6	27.9
1955	0.5	1.0	2.1	4.6	3.4	-0.5	7.3	6.9	2.7	2.6	1.4	0.4	32.4
1956	0.6	1.1	1.9	2.8	3.9	4.5	5.0	3.7	4.7	3.7	1.3	0.5	33.7
1957	0.7	1.0	1.3	0.5	-0.6	-1.1	6.1	3.7	2.3	1.7	1.2	0.4	17.2
1958	0.7	0.1	1.0	0.6	2.3	4.4	1.0	1.9	3.3	3.3	1.0	0.6	20.2
1959	0.4	1.0	1.1	2.1	1.0	3.5	5.0	4.8	2.3	0.7	1.5	0.6	24.0
1960	0.1	0.7	2.0	2.7	0.9	0.1	4.9	3.6	3.9	2.0	1.3	0.4	22.6
1961	0.9	1.0	1.4	2.7	-1.1	0.6	5.1	2.9	1.2	2.4	0.7	0.1	17.9

BASELINE - 1993 LEVEL FLOWS - HARLAN COUNTY EVAPORATION													
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1962	0.6	0.6	0.9	3.7	3.4	1.5	0.3	1.6	2.0	2.0	1.7	0.3	18.6
1905	0.7	1.4	1.5	4.5	4.0	0.5	0.1	5.1 2.0	-0.8	2.7	1.5	0.4	31.8 21.2
1904	0.8	0.8	1.7	3 .2	5.0	1.2	6.9 2.0	3 .0	3.0	3.3	1.2	0.6	31.3
1965	0.4	0.7	1.2	2.8	1.5	-0.5	2.0	2.8	-3.9	1.7	2.1	0.4	11.2
1966	0.9	0.8	2.9	2.7	7.5	2.8	5.8	3.7	2.7	2.8	1.5	0.4	34.5
1967	0.7	1.2	2.5	3.0	2.0	-2.9	1.6	4.5	3.5	2.0	1.6	0.4	20.1
1968	0.9	1.2	2.8	2.6	3.2	4.9	4.7	1.8	2.3	0.7	1.2	0.2	26.5
1969	0.4	0.6	2.4	3.3	0.1	3.8	-0.7	2.9	2.2	-1.0	1.5	0.4	15.9
1970	0.7	1.4	2.3	2.8	4.7	4.4	6.5	5.9	0.9	1.0	1.5	0.7	32.8
1971	0.7	0.2	2.0	2.9	0.7	5.1	3.4	4.5	1.4	1.5	0.2	0.5	23.1
1972	0.8	1.3	2.0	1.7	1.1	0.0	3.3	1.8	2.1	1.7	-0.4	0.1	15.5
1973	0.5	1.1	-0.7	2.5	3.4	6.7	-1.7	4.2	-3.0	0.2	0.2	0.2	13.6
1974	0.7	1.5	2.6	1.5	3.7	2.5	9.1	2.6	3.4	1.4	1.1	0.3	30.4
1975	0.7	0.7	2.0	2.1	0.8	1.1	4.3	2.7	3.0	3.4	0.7	0.6	22.1
1976	0.8	1.2	1.7	0.7	1.5	5.0	5.9	5.7	-0.2	1.4	1.4	0.7	25.8
1977	0.7	1.3	0.2	1.1	0.0	4.6	4.0	0.6	2.0	1.6	1.0	0.4	17.5
1978	0.5	0.7	1.2	3.4	3.9	6.2	7.1	4.5	4.5	3.0	1.1	0.5	36.6
1979	0.5	0.6	1.1	3.9	4.4	4.6	3.5	5.1	4.1	2.8	1.4	0.7	32.7
1980	0.5	0.6	1.2	3.4	3.7	4.7	6.8	6.0	3.9	2.7	1.3	0.6	35.4
1981	0.5	0.6	1.2	3.8	3.2	4.8	4.2	3.7	2.9	1.7	1.3	0.7	28.6
1982	0.5	0.7	1.2	3.9	3.8	3.9	5.1	3.8	2.9	2.2	1.4	0.8	30.2
1983	0.5	0.7	1.4	2.9	4.2	5.3	8.6	7.2	4.6	1.8	1.5	0.6	39.3
1984	0.6	0.8	1.4	2.9	4.2	5.8	7.2	5.7	4.7	1.4	1.4	0.7	36.8
1985	0.5	0.7	1.3	2.3	4.0	4.5	5.6	3.5	3.8	1.5	1.5	0.7	29.9
1986	0.6	0.7	1.3	2.8	4.4	5.8	6.7	4.0	2.7	1.3	1.4	0.7	32.4
1987	0.5	0.8	1.3	3.1	4.2	6.2	6.9	3.5	3.1	2.2	1.4	0.7	33.9
1988	0.5	0.7	1.3	3.5	4.9	6.6	4.6	4.8	3.5	2.2	1.4	0.7	34.7
1989	0.5	0.7	1.2	4 2	4 5	44	4 8	3.6	3.0	2.5	14	0.7	31.5
1990	0.5	0.7	1.2	3.0	3.5	5.6	6.4	4.0	5.0	3.4	1.4	0.6	35.3
1991	0.5	0.7	1.2	2.8	33	5.5	6.0	5.0	5.0	3.2	13	0.6	35.2
1997	0.5	0.7	1.2	1.8	3.5	2.2	<u>4</u> 1	3.5	4.2	2.0	1.5	1.0	27 3
1//4	0.0	U./	1.4	1.0	5.4	4.4	T.1	5.5	T .4	4.1	1.7	1.0	41.5

Attachment 4: Evaporation Loss Harlan County Lake 1993 Level of Development

Republican River Compact Administration

Accounting Procedures and Reporting Requirements Revised August 21, 2020

1993	0.6	0.5	1.0	2.2	3.1	4.6	4.2	4.9	4.5	4.4	3.1	1.2	34.3
Avg	0.6	0.8	1.5	2.7	3.2	3.9	5.3	4.3	2.8	2.2	1.3	0.5	29.1

Attachment 5: Projected Water Supply Spread Sheet Calculations

TriggerCalculations Based on Harlan County Lake IrrigationSupply	Units-100 Acre-feet	0 Irriş Tota Bot Eva	gation Trigger al Irrigation Supp tom Irrigation poration Adjust	ply	119.0 130.0 164.1 20.0		Assume HCL Int	that during i flow = Evapo	rrigation r pration Los	elease seasor ss	1			
	Oct	Nov	Dec	Jan		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1993 Level AVE inflow	6.3	5	4.7	4.5		8.8	14.1	13.0	17.2	30.6	11.0	6.2	5.4	126.8
1993 Level AVE evap	2.2	1.3	0.5	0.6		0.8	1.5	2.7	3.2	3.9	5.3	4.3	2.8	29.1
(1931-93)														
Avg. Inflow Last 5 Years	10.8	13.0	12.3	12.9)	16.6	22.4	19.4	18.1	14.8	16.5	11.0	4.7	172.6

Year 2001-2002 Oct - Jun Trigger and Irrigation Supply Calculation									
CalculationMonth	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Previous EOM Content	236.5	235.9	238.6	242.9	248.1	255.1	263.8	269.6	276.2
Inflow to May 31	73.6	67.3	62.3	57.6	53.1	44.3	30.2	17.2	0.0
Last 5 Yrs Avg Inflow to May 31	125.6	114.8	101.7	89.5	76.6	59.9	37.5	18.1	0.0
Evap to May 31	12.8	10.6	9.3	8.8	8.2	7.4	5.9	3.2	0.0
Est. Cont May 31	297.3	292.6	291.6	291.7	293.0	292.0	288.1	283.6	276.2
Est. Elevation May 31	1944.44	1944.08	1944.00	1944.01	1944.11	1944.03	1943.72	1943.37	1942.77
Max. Irrigation Available	153.2	148.5	147.5	147.6	148.9	147.9	144.0	139.5	132.1
Irrigation Release Est.	120.1	117.4	116.8	116.8	118.1	117.1	116.8	116.8	116.8
Trigger - Yes/No	NO	YES							
130 kAF Irrigation Supply - Yes/No	NO								

Attachment 5: Projected Water Supply Spread Sheet Calculations

Year 2002 Jul - Sep Final Trigger and Total Irrigation Supply Calculation			
CalculationMonth	Jul	Aug	Sep
Previous EOM Irrigation Release Est	. 116.8	116.0	109.7
Previous Month Inflow	5.5	0.5	1.3
Previous Month Evap	6.3	6.8	6.6
Irrigation Release Estimate	116.0	109.7	104.4
Final Trigger - Yes/No	YES		
130 kAF Irrigation Supply - Yes/No	NO	NO	NO

А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	M	<u>MN</u>	<u>NO</u>	<u> OP</u>	<u>₽Q</u>	<u>QR</u>	<u>RS</u>
Total	Hardy	Superior-	Courtlan	Superior	Courtlan	Superior	Total	NE	KS	Total	Gain	<u>Flood</u>	<u>₩₩S</u> CW	Main	Nebraska	Kansas	Nebraska	Kansas
Main	gage	Courtlan	d Canal	Canal	d Canal	Canal	Bostwick	CBCU	CBC	CBC	Guide	<u>Flow</u>	<u>S</u>	Stem	Main	Main	Guide	Guide
Stem		d	Diversio	Diversio	Returns	Returns	Returns	Below	U	U	Rock	<u>adjustme</u>	Guide	Virgin-	Stem	Stem	Rock to	Rock to
VWS		Diversio	ns	ns			Below	Guide	Belo	Belo	to	nt for the	Rock	Comp	Allocatio	Allocatio	Hardy	Hardy
CWS		n Dam					Guide	Rock	w	w	Hardy	Mainstem	to	uted	n Above	n Above	Allocatio	Allocatio
		Gage					Rock		Guide	Guide		Between	Hardy	Water	HardyGu	HardyGu	n	n
		-							Rock	Rock		Guide		Suppl	ide Rock	ide Rock		
												Rock and		у				
l												Hardy		Above				
														Guide				
														Rock				
							Col F+			Col I	+ Col B		+ Col L	Col A	.489 x	.511 x	.489 x	.511 x
							Col G			+ Col	- Col C+		+ Col K -	- Col	Col <u>NO</u>	Col <u>NO</u>	Col <u>MN</u>	Col <u>₩N</u>
										J	Col K -		<u>Col M</u>	<u>MN</u>				
											Col H							

Attachment 6: Computing Water Supplies and Consumptive Use Above Guide Rock

Note: At its Annual Meeting on August 21, 2020, the RRCA agreed that the Accounting Procedures (Rev. May 25, 2017) do not properly implement the Flood Flow provisions at the Hardy gage with respect to the calculation of Computed Water Supply above and below Guide Rock. The current implementation could impact Nebraska's Table 5C compliance test, specifically the Allocation above Guide Rock. Nebraska and Kansas each offered proposals to resolve the issue but could not reach agreement on a solution. Due to the infrequent occurrence of Flood Flows, the RRCA deferred resolution of the matter to a future date necessitated by and preceding impact to Nebraska's Table 5C compliance. The states wish to acknowledge and memorialize the issue to encourage work toward its resolution. As it stands, Attachment 6 calculates the Virgin Water Supply Guide Rock to Hardy rather than Computed Water Supply Guide Rock to Hardy which would reduce the Virgin Water Supply by the relevant Flood Flows as described in Section II. Definitions and Section III. Basic Formulas.

Attachment 7: Calculations of Return Flows from Bureau of Reclamation Canals

Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9	Col 10	Col 11	Col 12
Canal	Canal Diversion	Spill to Waste-way	Net Diversion	Field Deliveries	Canal Loss	Average Field Loss Factor	Field Loss	Total Loss from District	Percent field and Canal Loss That Returns to the Stream	Total return to Stream from Canal and Field Loss	Return as Percent of Canal Diversion
Name Canal	Headgate	Sum of	Col 2 -	Sum of	Col 4 –	1 – Weighted	Col 5 x	Col 6 +	Estimated	Col 9 x	Col 11 /
Σ Irrigation Season	Diversion	measured	Col 3	deliveries	Col 5	Average Efficiency of	Col 7	Col 8	Percent	Col 10 +	Col 2
Σ Non-Irrigation Season		spills to		to the field		Application System			LOSS		
Example	100	5	95	60	35	30%	18	53	82%	48.46	48.5%
	100	5	95	0	95	30%	0	95	92%	87.4	87.4%
Culbertson						30%			82%		
						30%			92%		
Culbertson Extension						30%			82%		
						30%			92%		
Meeker - Driftwood						30%			82%		
						30%			92%		
Red Willow						30%			82%		
						30%			92%		
Bartley						30%			82%		
						30%			92%		
Cambridge						30%			82%		
						30%			92%		
Naponee						35%			82%		
						35%			92%		
Franklin						35%			82%		
						35%			92%		
Franklin Pump						35%			82%		
						35%			92%		
Almena						30%			82%		
Superior						31%			82%		
						31%			92%		
Nebraska Courtland						23%			82%		
Courtland Canal Above Lovewell (KS)						23%			82%		
Courtland Canal Below Lovewell						23%			82%		

*The average field efficiencies for each district and percent loss that returns to the stream may be reviewed and, if necessary, changed by the RRCA to improve the accuracy of the estimates.

76

Attachment 8:	Calculation of the Computed	Water Supply	Adjustment a	and Remaining	Compact	Compliance	Volume for
Implementatio	n of 2016 RRCA Resolution						

	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9	Col 10	Col 11	Col 12
						Total			CCV			
					RCCV	CCV and	Total CCV	CCV	Released	CCV		
	Start of			CCV	Inflow	RCCV	and RCCV	Released	from HCL as	Retained in		
	Year	RCCV		Inflow	Into	Inflow	Available	from HCL	Evaporation	HCL (at End		End of Year
	RCCV	Adjustment	CCV	Into HCL	HCL	Into HCL	for Release	as Flow	_	of Year)	CWSA	RCCV ⁸
	=Col. 12 of	9	10			= Col. 4 +	=Col. 6 +			= Col. 7 –	=Col. 10 –	= Col. 1 –
	previous					Col. 5	Col. 10 of			(Col. 8 +	Col. 10 of	Col. $2 + Col.$
	year						previous			Col. 9)	previous	3 – Col. 6
							year				year	
Year 1												
Year 2												
Year 3												
Year 4												
Year 5												

This attachment provides definitions and example calculations for determining the Computed Water Supply Adjustment (CWSA), Remaining Compact Compliance Volume (RCCV), and other calculations necessary for implementation of the RRCA Resolution signed August 24, 2016, titled "Resolution Approving Long-Term Agreement Related to the Operation of Harlan County Lake for Compact Call Years." An electronic copy of the spreadsheet containing the live formulas in this Attachment is included with the May 25, 2017, Accounting Procedures adopted by the RRCA and will be used as Attachment 8.

⁸ The formula for calculation of RCCV is based on calendar year operations and will vary when operations occur in a different calendar year than NERWS Credit is applied.

⁹ See Provision 10 of the RRCA Resolution signed August 24, 2016, titled "Resolution Approving Long-Term Agreement Related to the Operation of Harlan County Lake for Compact Call Years" for the terms of assigning RCCV Adjustment. The RCCV Adjustment for each year is equal to 20% of the unadjusted portion of the RCCV, if it is a non-Compact Call Year, plus any remaining volumetric reductions from the previous four years.

¹⁰ In years when the contributions from Nebraska's water management activities, consistent with the 2016 CCY HCL Operations Resolution, are greater than CCV and the NERWS is equal to the greater contribution volume, CCV in Column 3 should also be set equal to the contribution.

Definitions

The definitions below identify additional terms from the Accounting Procedures and Resolution that are utilized in the calculations.

CCV Inflow Into HCL is the Compact Compliance Volume made available in HCL for Kansas exclusive use pursuant to the 2016 CCY HCL Operations Resolution;

CCV Released from HCL is the volume of CCV Inflow Into HCL and RCCV Inflow Into HCL that is released from HCL in a calendar year;

CCV Retained in HCL is the volume of CCV Inflow Into HCL and RCCV Inflow Into HCL that is not released from HCL in a calendar year;

RCCV Inflow Into HCL is the Remaining Compact Compliance Volume made available in HCL for Kansas exclusive use pursuant to 2016 CCY HCL Operations Resolution;

CWSA and RCCV Example Calculations

Five examples representing various conditions have been developed to illustrate calculations of the CWSA and RCCV. These examples are applicable to calculations based on calendar year operations and will vary when CCV and RCCV Inflow Into HCL occurs in a different calendar year than NERWS Credit is applied. The five examples are presented below:

- Example 1: <u>All CCV Inflow Into HCL is Passed Through HCL</u>
- Example 2: <u>A Portion of CCV Inflow Into HCL is Retained in HCL</u>
- Example 3: <u>A Portion of CCV Inflow Into HCL is Retained in HCL and Released in a</u> <u>Subsequent Calendar Year</u>
- Example 4: <u>**RCCV Inflow Into HCL and CCV Inflow Into HCL**</u>
- Example 5: <u>HCL Reservoir Accounting for CWSA</u>
- <u>RCCV Example Calculation</u>

Evaporation losses have been ignored in these examples for simplicity. In reality, any water stored in HCL, including water from CCV or RCCV sources, is subject to evaporation, per the current RRCA Accounting Procedures.

Example 1: All CCV Inflow Into HCL is Passed Through HCL

In this example, all CCV inflow into HCL is released in the same year (Year = 1) that the APV occurred.

Assumptions

- RCCV = 0
- CCV = 20,000 Acre-feet
- APV = 20,000 Acre-feet
- CCV Inflow Into HCL = 20,000 Acre-feet
- RCCV Inflow Into HCL = 0
- CCV Released from HCL = 20,000 Acre-feet
- CCV Retained in HCL = 0
- NERWS Credit = 20,000 Acre-feet

Computed Water Supply Adjustment (CWSA)

The Computed Water Supply Adjustment (CWSA) can simply be calculated by subtracting the CCV Released from HCL from the CCV Inflow into HCL:

CWSA = CCV Inflow Into HCL + RCCV Inflow Into HCL - CCV Released from HCL

= 20,000 + 0 - 20,000 = 0

Since all CCV inflow into HCL is passed through the reservoir within the same year, there is no CWSA adjustment necessary in Year 1 or in any subsequent year's accounting.

Example 2: A Portion of CCV Inflow Into HCL is Retained in HCL

This example includes some of the same initial conditions as in Example 1, except that a portion of the CCV Inflow Into HCL is retained into a subsequent year. Additional accounting adjustments are required as a result and are illustrated below:

Assumptions

- RCCV = 0
- CCV = 20,000 Acre-feet
- APV = 20,000 Acre-feet
- CCV Inflow Into HCL = 20,000 Acre-feet
- RCCV Inflow Into HCL = 0
- CCV Released from HCL = 15,000 Acre-feet
- CCV Retained in HCL = 5,000 Acre-feet
- NERWS Credit = 20,000 Acre-feet

Computed Water Supply Adjustments (CWSA)

Because a portion of the CCV Inflow Into HCL is retained in HCL, a positive CWSA results:

CWSA = CCV Inflow Into HCL + RCCV Inflow Into HCL – CCV Released from HCL = 20,000 + 0 - 15,000 = 5,000 Acre-feet

The accounting adjustment to the Main Stem CWS in this example would be made through applying a CWSA of 5,000 acre-feet through the calculations in Subsection IV.B of the RRCA Accounting Procedures.

Example 3: A Portion of CCV Inflow Into HCL is Retained in HCL and Released in a Subsequent Calendar Year

This example is identical to the situation in Example 2 above, with the exception that we will also consider what accounting adjustments are needed in the subsequent year (Year 2) once CCV Retained in HCL is released from the reservoir.

Assumptions

- RCCV = 0
- CCV = 20,000 Acre-feet
- APV = 20,000 Acre-feet
- CCV Inflow Into HCL = 20,000 Acre-feet
- RCCV Inflow Into HCL = 0
- CCV Released from HCL = 25,000 Acre-feet
- CCV Retained in HCL = 0
- NERWS Credit = 20,000 Acre-feet

Computed Water Supply Adjustment (CWSA)

Because the CCV Released from HCL includes CCV water stored over from a previous year, the CCV Released from HCL is greater than the CCV and RCCV Inflow Into HCL, resulting in a negative CWSA: CWSA = 20,000 + 0 - 25,000 = -5,000 Acre-feet

The accounting adjustment to the Main Stem CWS in this example would be made through applying a CWSA of -5,000 acre-feet through the calculations in Subsection IV.B of the RRCA Accounting Procedures.

Example 4: RCCV Inflow Into HCL and CCV Inflow Into HCL

This example includes the additional consideration of Remaining Compact Compliance Volume (RCCV). The CCV in this example will also be greater than that used in the previous examples:

Year 1

- Assumptions
 - RCCV = 0
 - CCV = 55,000 Acre-feet
 - APV = 20,000 Acre-feet
 - CCV Inflow Into HCL = 20,000 Acre-feet
 - RCCV Inflow Into HCL = 0
 - CCV Released from HCL = 15,000 Acre-feet
 - CCV Retained in HCL = 5,000 Acre-feet
 - NERWS Credit = 55,000 Acre-feet

In this example the Year 1 NERWS Credit is larger than the CCV Inflow Into HCL because Kansas has determined that a portion of the Compact Compliance Volume will be carried over as RCCV in Year 2.

Computed Water Supply Adjustment (CWSA)

CWSA = 20,000 + 0 - 15,000 = 5,000 Acre-feet

Remaining Compact Compliance Volume (RCCV) for Following Year

Year 2 RCCV = Start of Year 1 RCCV – RCCV Adjustment + CCV – (CCV Inflow Into HCL + RCCV Inflow Into HCL)

= 0 - 0 + 55,000 - (20,000 + 0) = 35,000 Acre-feet

The accounting adjustment to the Year 1 Main Stem CWS in this example would be made through applying a CWSA of 5,000 acre-feet through the calculations in Subsection IV.B of the RRCA Accounting Procedures.

Year 2

Assumptions

- RCCV = 35,000
- CCV = 10,000 Acre-feet
- APV = 45,000 Acre-feet
- CCV Inflow Into HCL = 10,000 Acre-feet
- RCCV Inflow Into HCL = 35,000 Acre-feet
- CCV Released from HCL = 50,000 Acre-feet
- CCV Retained in HCL = 0
- NERWS Credit = 10,000 Acre-feet¹¹

Computed Water Supply Adjustment (CWSA)

As the CCV Released from HCL is greater than CCV and RRCV Inflow into HCL, a negative CWSA results.

CWSA = 10,000 + 35,000 - 50,000 = -5,000 Acre-feet

The accounting adjustment to the Year 2 Main Stem CWS in this example would be made through applying a CWSA of -5,000 acre-feet through the calculations in Subsection IV.B of the RRCA Accounting Procedures.

Example 5: HCL Reservoir Accounting for CWSA

Because some of the accounting adjustments required under the examples described above involve multiyear operations, and because the current HCL water supply accounting methodologies under the Consensus Plan and the NBID-KBID MOA do not include consideration of several of the accounting components required under the new RRCA Resolutions, a reservoir accounting system may be needed for tracking certain portions of HCL content (CCV Retained in HCL). This example shows how this tracking might operate for HCL content, using a simple tabular format.

Year 1

Assumptions

- RCCV = 0
- CCV = 55,000 Acre-feet
- APV = 20,000 Acre-feet
- CCV Inflow Into HCL = 20,000 Acre-feet
- RCCV Inflow Into HCL = 0
- CCV Released from HCL = 15,000 Acre-feet
- CCV Retained in HCL = 5,000 Acre-feet
- NERWS Credit = 55,000 Acre-feet

¹¹ With respect to the NERWS Credit in Year 2, the value is only 10,000 Acre-feet, despite the fact that 45,000 Acre-feet of the CCV and RCCV water from Years 1 and 2 were made available in HCL during Year 2. This is because the credit is applied in the years in which it is needed for compliance purposes, and not necessarily in the same year as when releases are made from HCL or augmentation water is pumped.

As with Example 4, this example represents a situation in which Kansas determines that not all of the CCV is required in Year 1, leading to RCCV that carries over into Year 2. In addition, Kansas determines that not all of the CCV delivered to HCL would need to be released in Year 1, resulting in a CWSA of 5,000 Acre-feet.

Year 2

Assumptions

- RCCV = 35,000 Acre-feet
- CCV = 10,000 Acre-feet
- APV = 11,000 Acre-feet
- CCV Inflow Into HCL = 10,000 Acre-feet
- RCCV Inflow Into HCL = 1,000 Acre-feet
- CCV Released from HCL = 16,000 Acre-feet
- CCV Retained in HCL = 0
- NERWS Credit = 10,000 Acre-feet

Remaining Compact Compliance Volume (RCCV) for Following Year

Start of Year 3 RCCV = Start of Year 2 RCCV – RCCV Adjustment + CCV – (CCV Inflow Into HCL + RCCV Inflow Into HCL)

= 35,000 - 0 + 10,000 - (10,000 + 1,000) = 34,000 Acre-feet

Table 1. Example of HCL Accounting for CWSA

Table 1: Example HCL Accounting for CWSA

			Total CCV	V Total CCV		CCV	
	CCV Inflow	RCCV	and RCCV	and RCCV	CCV Balaasad from	Retained in	
	Into HCL	HCL	HCL	for Release	HCL	of Year)	CWSA
Year 0	0 af	0 af	0 af	0 af	0 af	0 af	0 af
Year 1	20,000 af	0 af	20,000 af	20,000 af	15,000 af	5,000 af	5,000 af
Year 2	10,000 af	1,000 af	11,000 af	16,000 af	16,000 af	0 af	-5,000 af

Table 1 above illustrates that once the RCCV or CCV water reaches HCL as inflow, there is no need to differentiate between the two sources, since both will be treated the same in terms of accounting adjustments, including when those supplies are released from the reservoir. It is sufficient, as a result, to include both water sources as one common pool for accounting purposes once they reach HCL. That is why both the last two terms in the table above ("CCV Released from HCL" and "CCV Retained in HCL") only include the abbreviation "CCV", even though they may include water from both CCV and RCCV inflows.

The examples contained in this attachment did not account for reservoir evaporation as a means to simplify the calculations. In reality, evaporation may impact the quantity of CCV water remaining within HCL. This evaporation will be assessed to the CCV Retained in HCL pool in proportion to the volume contained in this portion of the pool relative to the entire contents of the irrigation pool, consistent with methods employed by the Bureau of Reclamation to assess evaporation on water supplies within the reservoir.

CWSA and RCCV Tracking Example Calculations

This section contains an example of the calculations used to determine the CWSA, CCV, and RCCV and track how the RCCV changes year to year and between Compact Call Years and non-Compact Call Years.

Table 2. Example of Relationship between CCV and RCCV and annual tracking of CWSA

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12
									CCV			
						Total		CCV	Released	CCV		
					RCCV	CCV and	Total CCV	Released	from HCL	Retained in		
	Start of			CCV	Inflow	RCCV	and RCCV	from	as	HCL (at		
	Year	RCCV		Inflow	Into	Inflow	Available	HCL as	Evaporatio	End of		End of Year
	RCCV	Adjustment	CCV	Into HCL	HCL	Into HCL	for Release	Flow	n	Year)	CWSA	RCCV
	=Col. 12 of					= Col. 4 +	=Col. 6 +			= Col. 7 –	=Col. 10 –	= Col. 1 –
	previous					Col. 5	Col. 10 of			(Col. 8 +	Col. 10 of	Col. 2 + Col.
	year						previous			Col. 9)	previous	3 – Col. 6
							year				year	
Year 0	0	0	0	0	0	0	0	0	0	0	0	0
Year 1*	0	0	23,000	20,000	0	20,000	20,000	15,000	0	5,000	5,000	3,000
Year 2*	3,000	0	10,000	10,000	1,000	11,000	16,000	15,000	1,000	0	-5,000	2,000
Year 3*	2,000	0	15,000	15,000	0	15,000	15,000	15,000	0	0	0	2,000
Year 4	2,000	400	0	0	0	0	0	0	0	0	0	1,600
Year 5	1,600	400	0	0	0	0	0	0	0	0	0	1,200
Year 6	1,200	400	0	0	0	0	0	0	0	0	0	800
Year 7*	800	400	15,000	10,000	0	10,000	10,000	10,000	0	0	0	5,400
Year 8	5,400	1,400	0	0	0	0	0	0	0	0	0	4,000
Year 9	4,000	1,000	0	0	0	0	0	0	0	0	0	3,000

*Indicates Compact Call Year

Kansas Proposal on Flood Flows Accounting Issue emailed on 06/21/2021

Burgert, Kari

From:	Beightel, Chris [KDA] <chris.beightel@ks.gov></chris.beightel@ks.gov>
Sent:	Monday, June 21, 2021 10:14 AM
To:	Burgert, Kari; Franco - DNR, Ivan
Subject:	Flood Flows issue - Kansas proposal to cap GRtoHdy allocation
Follow Up Flag:	Follow up
Flag Status:	Completed

Kari and Ivan,

After considering our EC discussion on May 20, it appears to Kansas that in lieu of developing a new Flood Flows adjustment for the Computed Water Supply of the Guide Rock to Hardy reach, the issue of increasing allocation in that reach could be solved by simply agreeing to cap the allocation.

In 2015, Nebraska's allocation below Guide Rock was 33,485 acre-feet, the highest non-Flood Flows-year allocation reported since 1995. Kansas proposes that in a Flood Flows year, Nebraska's allocation below Guide Rock be calculated as it currently is but capped at 33,485 acre-feet. I think this is a reasonable compromise that addresses both Nebraska's and Kansas' concerns.

Regards, Chris

Chris Beightel, PE Program Manager - Water Management Services Kansas Department of Agriculture Division of Water Resources 785.564.6659 Follow-up on Kansas Proposal on Flood Flows Accounting Issue emailed on 07/02/2021

Burgert, Kari

From: Sent:	Beightel, Chris [KDA] <chris.beightel@ks.gov> Friday, July 2, 2021 2:59 PM</chris.beightel@ks.gov>
То:	Burgert, Kari; Franco - DNR, Ivan; Erickson, Chelsea [KDA]; Willem Schreuder; Davis, Alexa; Bradley, Jesse: Engelhaupt, David [KDA]: Hickman, Elizabeth [KDA]
Cc:	Lewis, Earl [KDA]
Subject:	Re: RRCA EC - Flood Flows discussion 2
Attachments:	20210628.GR-HdyCapProposal-KS.xlsx
Follow Up Flag:	Follow up
Flag Status:	Completed

Kari and Ivan,

Attached is the spreadsheet showing the impact of Kansas' proposal with varying Guide Rock and Hardy flows as the group has seen in the past. The implementation of Kansas' proposed cap is shown in tab "CapProposal...". There is a note at the lower right-hand area of the worksheet that explains how it was implemented. Let me know if you have any questions about it.

And Kari, thanks for the summary notes from the 21 June meeting. They look fine to Kansas.

Chris Beightel, PE Program Manager - Water Management Services Kansas Department of Agriculture Division of Water Resources 785.564.6659

From: Burgert, Kari <kari.burgert@nebraska.gov>
Sent: Tuesday, June 22, 2021 4:10 PM
To: Beightel, Chris [KDA] <Chris.Beightel@ks.gov>; Franco - DNR, Ivan <ivan.franco@state.co.us>; Erickson, Chelsea
[KDA] <Chelsea.Erickson@ks.gov>; Willem Schreuder <willem@prinmath.com>; Davis, Alexa
<Alexa.Davis@nebraska.gov>; Bradley, Jesse <Jesse.Bradley@nebraska.gov>; Engelhaupt, David [KDA]
<David.Engelhaupt@ks.gov>; Hickman, Elizabeth [KDA] <Elizabeth.Hickman@ks.gov>
Cc: Lewis, Earl [KDA] <Earl.Lewis@ks.gov>
Subject: RE: RRCA EC - Flood Flows discussion 2

EXTERNAL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.

1

Chris and Ivan -

Please see the attached summary of this morning's meeting. Please let me know if you have any edits. Thanks! Kari

-----Original Appointment-----

From:

Sent: Thursday, May 27, 2021 9:20 AM
To: Burgert, Kari; Beightel, Chris [KDA]; Franco - DNR, Ivan; Erickson, Chelsea [KDA]; Willem Schreuder; Davis, Alexa; Bradley, Jesse; david.engelhaupt@ks.gov; elizabeth.hickman@ks.gov
Cc: Lewis, Earl [KDA]
Subject: RRCA EC - Flood Flows discussion 2
When: Tuesday, June 22, 2021 11:00 AM-12:00 PM America/Chicago.
Where: https://us02web.zoom.us/j/83870713940?pwd=NTZMZEM2ZktDaGlla3Zna1RkUFdCdz09

Agenda

- 1. Welcome/Introductions
- 2. Draft Notes from 5/18/21 meeting
- 3. Kansas' 6/21/21 proposal
- 4. Annual meeting
 - a. Bring to Commissioners?
 - b. Assignment for next year?
- 5. Next Steps

DNR Water Planning is inviting you to a scheduled Zoom meeting.

Join Zoom Meeting https://us02web.zoom.us/j/83870713940?pwd=NTZMZEM2ZktDaGlla3Zna1RkUFdCdz09

Meeting ID: 838 7071 3940 Passcode: 080498 One tap mobile +13462487799,,83870713940# US (Houston) +16699009128,,83870713940# US (San Jose)

Dial by your location +1 346 248 7799 US (Houston) +1 669 900 9128 US (San Jose) +1 253 215 8782 US (Tacoma) +1 312 626 6799 US (Chicago) +1 646 558 8656 US (New York) +1 301 715 8592 US (Washington DC) Meeting ID: 838 7071 3940 Find your local number: https://us02web.zoom.us/u/kf1ewfA6a

Main Stem Flood Flow Adjustment (when applicable) assume subbasin FF									
1 Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
Hardy									
400000	-41278	-41278	-41278	-41278	-41278	-41278	-41278	-41278	-41278
450000	8722	8722	8722	8722	8722	8722	8722	8722	8722
500000	58722	58722	58722	58722	58722	58722	58722	58722	58722
550000	108722	108722	108722	108722	108722	108722	108722	108722	108722
<mark>625,783</mark>	184505	184505	184505	184505	184505	184505	184505	184505	184505
650000	208722	208722	208722	208722	208722	208722	208722	208722	208722
700000	258722	258722	258722	258722	258722	258722	258722	258722	258722
750000	308722	308722	308722	308722	308722	308722	308722	308722	308722
800000	358722	358722	358722	358722	358722	358722	358722	358722	358722
850000	408722	408722	408722	408722	408722	408722	408722	408722	408722
900000	458722	458722	458722	458722	458722	458722	458722	458722	458722
- I									
↓ ↓	Gain GRtol	Hdy (assum	ne Bostwic	k returns o	of	10359	AF)		
2 Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
Hardy									
400000	-10,359	-60,359	-112,635	-160,359	-210,359	-260,359	-310,359	-360,359	-410,359
450000	39,641	-10,359	-62,635	-110,359	-160,359	-210,359	-260,359	-310,359	-360,359
500000	89,641	39,641	-12,635	-60,359	-110,359	-160,359	-210,359	-260,359	-310,359
550000	139,641	89,641	37,365	-10,359	-60,359	-110,359	-160,359	-210,359	-260,359
<mark>625,783</mark>	215,424	165,424	113,148	65,424	15,424	-34,576	-84,576	-134,576	-184,576
650000	239,641	189,641	137,365	89,641	39,641	-10,359	-60,359	-110,359	-160,359
700000	289,641	239,641	187,365	139,641	89,641	39,641	-10,359	-60,359	-110,359
750000	339,641	289,641	237,365	189,641	139,641	89,641	39,641	-10,359	-60,359
800000	389,641	339,641	287,365	239,641	189,641	139,641	89,641	39,641	-10,359
000000									
850000	439,641	389,641	337,365	289,641	239,641	189,641	139,641	89,641	39,641

		Computed	water sup	ply GRtoHc	ly (assume	CBCU GRt	oHdy =	3840	AF)	
3	Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
Hardy										
400000	١	-6,519	-56,519	-108,795	-156,519	-206,519	-256,519	-306,519	-356,519	-406,519
450000	١	43,481	-6,519	-58,795	-106,519	-156,519	-206,519	-256,519	-306,519	-356,519
500000	١	93,481	43,481	-8,795	-56,519	-106,519	-156,519	-206,519	-256,519	-306,519
550000	1	143,481	93,481	41,205	-6,519	-56,519	-106,519	-156,519	-206,519	-256,519
625,783		219,264	169,264	116,988	69,264	19,264	-30,736	-80,736	-130,736	-180,736
650000	1	243,481	193,481	141,205	93,481	43,481	-6,519	-56,519	-106,519	-156,519
700000	1	293,481	243,481	191,205	143,481	93,481	43,481	-6,519	-56,519	-106,519
750000	1	343,481	293,481	241,205	193,481	143,481	93,481	43,481	-6,519	-56,519
800000	1	393,481	343,481	291,205	243,481	193,481	143,481	93,481	43,481	-6,519
850000	1	443,481	393,481	341,205	293,481	243,481	193,481	143,481	93,481	43,481
900000	1	493,481	443,481	391,205	343,481	293,481	243,481	193,481	143,481	93,481
		-								

		Allocation	GRtoHdy =		0.489	X CWS GRt	oHdy			
4	Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
ırdy										
400000		-3,188	-27,638	-53,201	-76,538	-100,988	-125,438	-149,888	-174,338	-198,788
450000		21,262	-3,188	-28,751	-52,088	-76,538	-100,988	-125,438	-149,888	-174,338
500000		45,712	21,262	-4,301	-27,638	-52,088	-76,538	-100,988	-125,438	-149,888
550000		70,162	45,712	20,149	-3,188	-27,638	-52,088	-76,538	-100,988	-125,438
<mark>625,783</mark>		107,220	82,770	57,207	33,870	9,420	-15,030	-39,480	-63,930	-88,380
650000		119,062	94,612	69,049	45,712	21,262	-3,188	-27,638	-52,088	-76,538
700000		143,512	119,062	93,499	70,162	45,712	21,262	-3,188	-27,638	-52,088
750000		167,962	143,512	117,949	94,612	70,162	45,712	21,262	-3,188	-27,638
800000		192,412	167,962	142,399	119,062	94,612	70,162	45,712	21,262	-3,188
850000		216,862	192,412	166,849	143,512	119,062	94,612	70,162	45,712	21,262
900000		241,312	216,862	191,299	167,962	143,512	119,062	94,612	70,162	45,712

025,765	264,720	509,170	334,/33	358,070	382,520	406,970	451,420	455,670	460,520
650000	272,878	297,328	322,891	346,228	370,678	395,128	419,578	444,028	468,478
700000	248,428	272,878	298,441	321,778	346,228	370,678	395,128	419,578	444,028
750000	223,978	248,428	273,991	297,328	321,778	346,228	370,678	395,128	419,578
800000	199,528	223,978	249,541	272,878	297,328	321,778	346,228	370,678	395,128
850000	175,078	199,528	225,091	248,428	272,878	297,328	321,778	346,228	370,678
900000	150,628	175,078	200,641	223,978	248,428	272,878	297,328	321,778	346,228
	Reduction	to Statewi	de allocatio	on from flo	od flow ye	ar	SW alloc	391940	
5 Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
ardy									
400000	-3,188	-27,638	-53,201	-76,538	-100,988	-125,438	-149,888	-174,338	-198,788
450000	21,262	-3,188	-28,751	-52,088	-76,538	-100,988	-125,438	-149,888	-174,338
500000	45,712	21,262	-4,301	-27,638	-52,088	-76,538	-100,988	-125,438	-149,888
550000	70,162	45,712	20,149	-3,188	-27,638	-52,088	-76,538	-100,988	-125,438
<mark>625,783</mark>	107,220	82,770	57,207	33,870	9,420	-15,030	-39,480	-63,930	-88,380
650000	119,062	94,612	69,049	45,712	21,262	-3,188	-27,638	-52,088	-76,538
700000	143,512	119,062	93,499	70,162	45,712	21,262	-3,188	-27,638	-52,088
750000	167,962	143,512	117,949	94,612	70,162	45,712	21,262	-3,188	-27,638
800000	192,412	167,962	142,399	119,062	94,612	70,162	45,712	21,262	-3,188
850000	216,862	192,412	166,849	143,512	119,062	94,612	70,162	45,712	21,262
900000	241,312	216,862	191,299	167,962	143,512	119,062	94,612	70,162	45,712
	-								

5 Guide R

Hardy 400000

450000

500000

550000

nevertheless there's probably a better solution.

Values for subbasin flood flows (K2), Bostwick Returns (H18), CBCU CRtoHdy(U2) are from https://www.republicanrivercompact.org/restricted/acct/13jan2020-f1.htm on January 21,2020 Values for 2019 gaged flow at Hardy and Guide Rock are included in highlighted cells

WSY alloca	tion (Swid	e alloc - Blv	wGR alloc)			SW alloc	<u>391940</u>	
400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
395,128	419,578	445,141	468,478	492,928	517,378	541,828	566,278	590,728
370,678	395,128	420,691	444,028	468,478	492,928	517,378	541,828	566,278
346,228	370,678	396,241	419,578	444,028	468,478	492,928	517,378	541,828
321,778	346,228	371,791	395,128	419,578	444,028	468,478	492,928	517,378
284,720	309,170	334,733	358,070	382,520	406,970	431,420	455,870	480,320
272,878	297,328	322,891	346,228	370,678	395,128	419,578	444,028	468,478
248,428	272,878	298,441	321,778	346,228	370,678	395,128	419,578	444,028
223,978	248,428	273,991	297,328	321,778	346,228	370,678	395,128	419,578
199,528	223,978	249,541	272,878	297,328	321,778	346,228	370,678	395,128
175,078	199,528	225,091	248,428	272,878	297,328	321,778	346,228	370,678
150,628	175,078	200,641	223,978	248,428	272,878	297,328	321,778	346,228

This mehod allows the Guide Rock adjustment to grow with the increasing difference between the Hardy and Guide Rock gages. It does appear that at the extremes, this proposal probably takes too much from NE's allocation. This was the phenomenon that they were trying to address.

In the example above, by the time the difference between Hardy and Guide Rock gages is 350,000 AF, NE's statewide allocation is reduced by nearly 120,000 AF for purposes of the WSY test. This is unlikely to happen,

	Main Stem Flood Flow Adjustment (when applicable) assume subbasin FF								<mark>41278</mark>
1 Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
Hardy									
400000	-41278	-41278	-41278	-41278	-41278	-41278	-41278	-41278	-41278
450000	8722	8722	8722	8722	8722	8722	8722	8722	8722
500000	58722	58722	58722	58722	58722	58722	58722	58722	58722
550000	108722	108722	108722	108722	108722	108722	108722	108722	108722
<mark>625,783</mark>	184505	184505	184505	184505	184505	184505	184505	184505	184505
650000	208722	208722	208722	208722	208722	208722	208722	208722	208722
700000	258722	258722	258722	258722	258722	258722	258722	258722	258722
750000	308722	308722	308722	308722	308722	308722	308722	308722	308722
800000	358722	358722	358722	358722	358722	358722	358722	358722	358722
850000	408722	408722	408722	408722	408722	408722	408722	408722	408722
900000	458722	458722	458722	458722	458722	458722	458722	458722	458722
1									
	Gain GRtol	Hdv (assun	ne Bostwic	k returns o	f	10359	AF)		
2 Guide R	400.000	450000	502276	550000	600.000	650000	700.000	750000	800.000
Hardy	,				,		,		,
400000	-10,359	-60,359	-112,635	-160,359	-210,359	-260,359	-310,359	-360,359	-410,359
450000	39,641	-10,359	-62,635	-110,359	-160,359	-210,359	-260,359	-310,359	-360,359
500000	89,641	39,641	-12,635	-60,359	-110,359	-160,359	-210,359	-260,359	-310,359
550000	139,641	89,641	37,365	-10,359	-60,359	-110,359	-160,359	-210,359	-260,359
625,783	215,424	165,424	113,148	65,424	15,424	-34,576	-84,576	-134,576	-184,576
650000	239,641	189,641	137,365	89,641	39,641	-10,359	-60,359	-110,359	-160,359
700000	289,641	239,641	187,365	139,641	89,641	39,641	-10,359	-60,359	-110,359
750000	339,641	289,641	237,365	189,641	139,641	89,641	39,641	-10,359	-60,359
800000	389,641	339,641	287,365	239,641	189,641	139,641	89,641	39,641	-10,359
850000	439,641	389,641	337,365	289,641	239,641	189,641	139,641	89,641	39,641
900000	489,641	439,641	387,365	339,641	289,641	239,641	189,641	139,641	89,641

		Computed	Computed water supply GRtoHd		dy (assume	CBCU GRt	coHdy =	3840	AF)	
3	Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
ardy										ļ
400000	i	-6,519	-56,519	-108,795	-156,519	-206,519	-256,519	-306,519	-356,519	-406,519
450000	j –	43,481	-6,519	-58,795	-106,519	-156,519	-206,519	-256,519	-306,519	-356,519
500000	i	93,481	43,481	-8,795	-56,519	-106,519	-156,519	-206,519	-256,519	-306,519
550000	j –	143,481	93,481	41,205	-6,519	-56,519	-106,519	-156,519	-206,519	-256,519
<mark>625,783</mark>	4	219,264	169,264	116,988	69,264	19,264	-30,736	-80,736	-130,736	-180,736
650000	i i	243,481	193,481	141,205	93,481	43,481	-6,519	-56,519	-106,519	-156,519
700000	j –	293,481	243,481	191,205	143,481	93,481	43,481	-6,519	-56,519	-106,519
750000	j –	343,481	293,481	241,205	193,481	143,481	93,481	43,481	-6,519	-56,519
800000	j –	393,481	343,481	291,205	243,481	193,481	143,481	93,481	43,481	-6,519
850000	i	443,481	393,481	341,205	293,481	243,481	193,481	143,481	93,481	43,481
900000	i	493,481	443,481	391,205	343,481	293,481	243,481	193,481	143,481	93,481
		•								
		•		,						
•	-	Allocation (GRtoHdy =	<u> </u>	0.489	X CWS GRt	toHdy			
4	Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
ardy										
400000	i -	-3,188	-27,638	-53,201	-76,538	-100,988	-125,438	-149,888	-174,338	-198,788
450000	i -	21,262	-3,188	-28,751	-52,088	-76,538	-100,988	-125,438	-149,888	-174,338
500000)	33,485	21,262	-4,301	-27,638	-52,088	-76,538	-100,988	-125,438	-149,888
550000	j –	33,485	33,485	20,149	-3,188	-27,638	-52,088	-76,538	-100,988	-125,438

33,485 33,485 33,485 33,485 9,420 -15,030 -39,480 -63,930 -88,380

33,485 33,485 33,485 33,485 21,262 -3,188 -27,638 -52,088 -76,538 33,485 33,485 33,485 33,485 33,485 21,262 -3,188 -27,638 -52,08

33,485 33,485 33,485 33,485 33,485 33,485 21,262 -3,188 -27,63

33,485 33,485 33,485 33,485 33,485 33,485 33,485 33,485 21,262

33,485 33,485 33,485 33,485 33,485 33,485 33,485 33,485 33,485

33,485 33,485 33,485 33,485 33,485 21,262 -3,18

		WSY allocation (Swide alloc - BlwGR alloc) SW alloc							<u>391940</u>	
5	Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
Hardy										
400000		395,128	419,578	445,141	468,478	492,928	517,378	541,828	566,278	590,728
450000		370,678	395,128	420,691	444,028	468,478	492,928	517,378	541,828	566,278
500000		358,455	370,678	396,241	419,578	444,028	468,478	492,928	517,378	541,828
550000		358,455	358,455	371,791	395,128	419,578	444,028	468,478	492,928	517,378
625,783		358,455	358,455	358,455	358,455	382,520	406,970	431,420	455,870	480,320
650000		358,455	358,455	358,455	358,455	370,678	395,128	419,578	444,028	468,478
700000		358,455	358,455	358,455	358,455	358,455	370,678	395,128	419,578	444,028
750000		358,455	358,455	358,455	358,455	358,455	358,455	370,678	395,128	419,578
800000		358,455	358,455	358,455	358,455	358,455	358,455	358,455	370,678	395,128
850000		358,455	358,455	358,455	358,455	358,455	358,455	358,455	358,455	370,678
900000		358,455	358,455	358,455	358,455	358,455	358,455	358,455	358,455	358,455

		Reduction	to Statewic	de allocatio	on from flo	od flow ye	ar	SW alloc	391940	
5	Guide R	400,000	450000	502276	550000	600,000	650000	700,000	750000	800,000
Hardy										
400000		-3,188	-27,638	-53,201	-76,538	-100,988	-125,438	-149,888	-174,338	-198,788
450000		21,262	-3,188	-28,751	-52,088	-76,538	-100,988	-125,438	-149,888	-174,338
500000		33,485	21,262	-4,301	-27,638	-52,088	-76,538	-100,988	-125,438	-149,888
550000		33,485	33,485	20,149	-3,188	-27,638	-52,088	-76,538	-100,988	-125,438
625,783		33,485	33,485	33,485	33,485	9,420	-15,030	-39,480	-63,930	-88,380
650000		33,485	33,485	33,485	33,485	21,262	-3,188	-27,638	-52,088	-76,538
700000		33,485	33,485	33,485	33,485	33,485	21,262	-3,188	-27,638	-52,088
750000		33,485	33,485	33,485	33,485	33,485	33,485	21,262	-3,188	-27,638
800000		33,485	33,485	33,485	33,485	33,485	33,485	33,485	21,262	-3,188
850000		33,485	33,485	33,485	33,485	33,485	33,485	33,485	33,485	21,262
900000		33,485	33,485	33,485	33,485	33,485	33,485	33,485	33,485	33,485

2021-06-28: This Kansas-proposed method allows the Guide Rock to Hardy allocation to increase according to the original accounting procedures, but caps the allocation at 33,485 acre-feet. 33,485 is the greatest allocation for the Guide Rock to Hardy reach in a non-Flood Flows year on record (2015) since 1995.

Values for subbasin flood flows (K2), Bostwick Returns (H18), CBCU CRtoHdy(U2) are from https://www.republicanrivercompact.org/restricted/acct/13jan2020-f1.htm on January 21,2020 Values for 2019 gaged flow at Hardy and Guide Rock are included in highlighted cells

625,783

650000

700000 750000

800000

850000

900000

33,485

33,485

At the 22 June 2021 meeting of the RRCA EC, Kansas proposed to cap the allocation between Guide Rock and Hardy at

33,485 acre-feet in a Flood Flows year.

To apply the cap, the only difference between this worksheet and the "Current method" worksheet is that a forumla was added to table 4 on this sheet (O21:W31) which uses the MIN function to implement the cap.

Flood Flows Focused 05/18/2021 Meeting Summary

Focused Flood Flows accounting assignment meeting RRCA Engineering Committee May 18, 2021 10:00 am Central *Virtual*

Attendees: Chris Beightel, Ivan Franco, Hongsheng Cao, Willem Schreuder, Kari Burgert, Jesse Bradley, Alexa Davis, Elizabeth Hickman, Sam Perkins

Summary:

Members of the Engineering Committee and additional state representatives met to focus on the Flood Flows accounting assignment.

Nebraska reviewed the issue described at the 2019 RRCA Working Session. In short, the issue described by Nebraska is that application of the Flood Flow adjustment did not appear to be contemplated in calculation of Above Guide Rock allocations, which manifested in Above Guide Rock allocations decreasing with increasing flow below Guide Rock.

Nebraska also reviewed their most recent proposal to calculate allocation between Guide Rock and Hardy from Computed Water Supply including a Flood Flow adjustment rather than from Virgin Water Supply. Nebraska proposed the Guide Rock and Hardy Flood Flow adjustment, when applicable, be calculated as the minimum of the Main Stem Flood Flow adjustment and the Guide Rock to Hardy Virgin Water Supply. Nebraska reiterated that this proposal appears maintain consistency with the FSS, addresses Nebraska's issue of decreasing Above Guide Rock allocations with increasing flow below Guide Rock in the current Accounting Procedures, and addresses Kansas's issue with Nebraska's original proposal by not allowing the Guide Rock to Hardy Computed Water Supply be negative when there are Flood Flows. Kansas maintains that their issue with this proposal is they do not see the justification for an allocation of 0 acre-feet between Guide Rock and Hardy in a Flood Flow year. Schreuder reviewed conceptualization of how an allocation, particularly for that of a portion of a subbasin, could be negative.

Kansas reviewed their latest proposal and noted some inconsistencies in the description provided. Kansas committed to sending out an updated proposal.

All parties discussed that the spreadsheets provided by Kansas showing the sensitivity of the proposed allocation calculations to Guide Rock and Hardy streamflows were useful and recommended continued display of the proposals in this manner.

Nebraska stated that their first two criteria for evaluating a proposed solution would be to determine if the FSS is being followed and to determine if the original issue observed of the allocation above Guide Rock decreasing with increasing flows below Guide Rock is resolved. Nebraska asked if any others would like to provide their criteria for evaluating a proposed solution. No additional criteria were provided at that time.

Kari asked that the Engineering Committee members think about what the Engineering Committee would be bringing to the Commissioners at this year's annual meeting and what assignment the Engineering Committee would want to recommend having for the next year to be included in the annual report.

Flood Flows Focused 06/22/2021 Meeting Summary

Focused Flood Flows accounting assignment meeting RRCA Engineering Committee June 22, 2021 11:00 am Central *Virtual*

Attendees: Chris Beightel, Ivan Franco, Willem Schreuder, Kari Burgert, Jesse Bradley, Alexa Davis, Elizabeth Hickman, Chelsea Erickson, Earl Lewis, David Engelhaupt

Summary:

Members of the Engineering Committee and additional state representatives met for a second time to focus on the Flood Flows accounting assignment.

The EC members agreed that the draft summary of the 5/18/21 meeting emailed out by Kari on 5/24/21 is final.

Chris summarized Kansas' 6/21/21 proposal (Attachment). Kansas' proposal is to set a cap of 33,485 acre-feet Nebraska's Below Guide Rock Allocation when there is a Flood Flows adjustment. Kansas' proposal does not require any additional changes to the calculations described in the Accounting Procedures.

Chris agreed to send out a spreadsheet showing the impact of Kansas' proposal with varying Guide Rock and Hardy flows as the group has seen in the past.

Nebraska committed to evaluating Kansas' proposal. Kari will let the group know if it seems like a meeting prior to the scheduled July 21 EC meeting is necessary based on Nebraska's evaluation.

REPUBLICAN RIVER COMPACT ADMINISTRATION (RRCA)

SUMMARY OF HISTORICAL CHANGES TO THE RRCA'S ACCOUNTING PROCEDURES AND REPORTING REQUIREMENTS

Contents

I.	Background and Purpose	1
II.	First Version of the Accounting Procedures	2
III.	Changes to the Accounting Procedures	2
Jai	nuary 2005 Accounting Procedures Update	2
Aι	gust 2006 Accounting Procedures Update	3
Aι	gust 2007 Annual Meeting Discussion	4
Aι	gust 2010 Accounting Procedures Update	4
Aι	gust 2015 Accounting Procedures Update	4
Aι	gust 2016 Accounting Procedures Update	5
M	ay 2017 Accounting Procedures Update	6
Aι	gust 2020 Accounting Procedures Update	6
IV.	Groundwater Model Versions	7
V.	Accounting Adjustments	7

I. Background and Purpose

The Republican River Compact Administration (RRCA) Accounting Procedure and Reporting Requirements (Accounting Procedures) describes the definitions, procedures, basic formulas, specific formulas, and data requirements and reporting formats to be used by the RRCA to compute the Virgin Water Supply, Computed Water Supply, Allocations, Imported Water Supply Credit, Resolution Water Supply Credits, and Computed Beneficial Consumptive Use (CBCU). These computations are used to determine supply, allocations, use and compliance with the Compact according to the Final Settlement Stipulation (FSS) and RRCA Resolutions. The Accounting Procedures may be changed by consent of the RRCA and formally adopted with an update to the RRCA Rules and Regulations. Since the FSS, the computations described in the Accounting Procedures have been implemented primarily through an accounting spreadsheet shared among the states.

The Accounting Procedures have been the subject of numerous assignments to the RRCA Engineering Committee (EC) with subsequent actions by the RRCA including the formal adoption of amended versions with update of the RRCA Rules and Regulations. In addition, the RRCA has instructed the EC to make certain accounting adjustments in particular years, which allowed the accounting to be changed without changing the Accounting Procedures.

At the August 27, 2015, RRCA annual meeting, the RRCA assigned the EC the task of summarizing historical changes that have been made to the Accounting Procedures. This document serves to fulfill this assignment. This document is only intended to summarize changes to the Accounting Procedures for educational purposes to aid in understanding the changes. Any omissions or characterizations contained in this document shall not supersede or alter the official actions taken by the RRCA to amend the Accounting Procedures or be used as evidence by any RRCA member state in future disputes.

This tracking document will continue to be updated with future changes to the Accounting Procedures or Groundwater Model Versions as a means to provide a general summary of relevant changes through time. Future updates to this document are the responsibility of the RRCA Engineering Committee Chair and will be reviewed and agreed upon by all three states.

This document includes the following sections: First Version of the Accounting Procedures, Changes to the Accounting Procedures, RRCA Groundwater Model Versions, and Accounting Adjustments. Many of the referenced documents are located on the RRCA official website, specifically on the Documents webpage (<u>http://republicanriver.org/rrca-documents-2/</u>) as well as on the Annual Reports webpage (<u>http://republicanriver.org/rrca-documents-2/</u>) as well as on the Annual Reports webpage (<u>http://republicanriver.org/rrca-documents-2/</u>).

II. First Version of the Accounting Procedures

The first version of the Accounting Procedures was agreed upon by the States on December 15, 2002, as Appendix C to the Final Settlement Stipulation (FSS), replacing previous methods of the RRCA to determine virgin water supplies and consumptive use by the States.

As provided in the FSS, the States agreed on June 30, 2003, to accept the RRCA groundwater model developed by the Groundwater Model committee formed for this purpose.

At the 2003 annual meeting, the RRCA formally adopted the Accounting Procedures and the RRCA groundwater model as the official procedures for calculating water supplies and water consumption, including approving changes to its rules and regulations that specifically cited them. *Republican River Compact Administration Forty-Second Annual Report for the Year 2002. Alma, Nebraska. August 22, 2003. Pages 7-9, New Business section.*

III. Changes to the Accounting Procedures

January 2005 Accounting Procedures Update

At the 2003 Annual Meeting, the RRCA, in addition to adopting the initial Accounting Procedures, assigned its Engineering Committee to review the Accounting Procedures and make

recommendations for needed corrections and improvements. The recommended assignments were then approved by the administration. *Republican River Compact Administration Forty-Second Annual Report for the Year 2002. Alma, Nebraska. August 22, 2003. Pages 7-9, Engineering Committee Report section.*

At the 2004 annual meeting, the Engineering Committee reported progress on the Accounting Procedure assignment. The Engineering Committee and technical representatives from the States of Colorado, Kansas, and Nebraska participated in numerous collaborative work activities and phone conferences and met May 3-4, 2004. Based upon a review of the Accounting Procedures and Formulas, the EC recommended the adoption of eleven editorial changes. *Republican River Compact Administration. Forty-Third Annual Report for the Year 2004. Burlington, Colorado. June 9, 2004. Pages 32 & 33, Engineering Committee Report.*

The Commissioners approved the EC's report at the 2004 annual meeting, specifically noting that the RRCA was approving the changes to the Accounting Procedures as recommended in the report. However, no revised Accounting Procedures document was provided or adopted until January 2005.

At the January 12, 2005, Special Meeting of the RRCA the Engineering Committee produced a revised version of the Accounting Procedures with all recommended changes to date. *Republican River Compact Administration. Forty-Fourth Annual Report for the Year 2004. Special Meeting Denver, Colorado. January 12, 2005. Annual Meeting Burlington, Colorado June 9, 2005. Page 2.*

The revised version of the Accounting Procedures dated January 12, 2005, was approved and attached to the Minutes of the Special Meeting of the RRCA. Also, at the 2005 Special Meeting, the RRCA Administration approved a change in the RRCA Rules and Regulations that specifically adopted the 2005 version of the Accounting Procedures and Groundwater Model version 12s (discussed below).

August 2006 Accounting Procedures Update

At the RRCA's regular annual meeting on July 27, 2005, the RRCA Engineering Committee developed a recommendation for proportioning annual net evaporation from Harlan County Lake to Kansas and Nebraska CBCU in years when no irrigation releases are made from Harlan County Lake, a situation that was not previously addressed in the Accounting Procedures. The specific language is detailed in the Engineering Committee's July 27, 2005, report, which is attached to the RRCA 44th Annual Report. The 2005 Engineering Committee report was approved by the RRCA. However, there was no official change to the Accounting Procedures, with revision date January 12, 2005.

The Accounting Procedures, containing this language, with revision date August 10, 2006, was officially adopted by the Commissioners at the next annual meeting in Phillipsburg, Kansas. *Annual Report August 10, 2006 pages 8 & 9 – Engineering Committee report to the Commissioners.*

August 2007 Annual Meeting Discussion

At the August 15, 2007, annual meeting in Junction City, Kansas, the Engineering Committee report stated that during the committee's work, it was discovered that Table 5B, *Kansas Compliance During Water-Short Year Administration*, in the Accounting Procedures did not allow Kansas to use 51.1% of any unused portion of Colorado's allocations as per Settlement Stipulation in the water-short year test. The Engineering Committee recommended that this change be made in the accounting spreadsheet. The Table 5B issue was remedied in the new business section of the annual meeting when the RRCA assigned the Engineering Committee to make the necessary change in the accounting spreadsheet. *Republican River Compact Administration. Forty-Sixth Annual Report for the Year 2006. Junction City, Kansas. August 15th, 2007. Pages 10 and 12 of the report.*

August 2010 Accounting Procedures Update

Two changes to the Accounting Procedures occurred in 2010 via RRCA resolution titled "Changes to the RRCA's Accounting Procedures and Reporting Requirements," signed by the Compact commissioners on August 12, 2010. The Engineering Committee recommended in its August 12, 2010, report to amend the Accounting Procedures to correct the formulas used to compute the Virgin Water Supply for both Frenchman Creek and the Main Stem to properly account for return flows from the Riverside Canal. The Engineering Committee also recommended in the same report to amend the Accounting Procedures to include the groundwater impact attributed to Kansas well pumping (GWk), as calculated by the RRCA Groundwater Model, in the formula to compute the Main Stem Virgin Water Supply. The proposal by the Engineering Committee was included as Attachment A to the August 12, 2010, Engineering Committee report and formally adopted by the RRCA Administration on August 12, 2010. The Accounting Procedures were updated with these changes and approved by the RRCA as the August 12, 2010 version, which replaced the January 12, 2005 version.

August 2015 Accounting Procedures Update

The August 2015 Accounting Procedures changes were implemented due to the United States Supreme Court decision of February 24, 2015, that accepted the recommendations contained in the November 15, 2013, Report of the Special Master, including modification of the Accounting Procedures. The EC provided a memorandum dated May 14, 2015, where the State of Nebraska proposed a revised version of the Accounting Procedures to include the changes stipulated in Appendix F, Exhibit A of the Report of the Special Master dated November 15, 2013, as well as proposed changes to Attachment 7 regarding spill to waste-way data.

The changes to the Accounting Procedures were enacted via resolution adopted by the RRCA at the RRCA annual meeting on August 27, 2015, and are attached to the 2015 RRCA annual report. The resolution is titled "Resolution of the Republican River Compact Administration Regarding Required Changes to the RRCA Accounting Procedures and Reporting Requirements

Document Proposed in the Report of the Special Master and Proposed Edits to Attachment 7 Regarding Spill to Waste-Way Data."

The changes contained in the Report of the Special Master were enacted for accounting years 2007 and forward, while the changes to Attachment 7 were enacted for accounting years 2015 and forward.

August 2016 Accounting Procedures Update

At the August 24, 2016, annual meeting of the RRCA, the Administration approved three resolutions that resulted in changes to the Accounting Procedures.

The first resolution, "Resolution of the Republican River Compact Administration Regarding Required Changes to the RRCA Accounting Procedures and Reporting Requirements Regarding Non-Irrigation Season Canal Diversions for Groundwater Recharge Purposes", approved August 24, 2016) required changes to the Accounting Procedures for non-irrigation season canal diversions for groundwater recharge purposes. The State of Nebraska provided documentation, reformed Accounting Procedures, and edits to the implementation of Attachment 7 in the accounting spreadsheet in a memorandum dated July 7, 2016, attached to the resolution. The proposed changes documented in the memorandum were approved with an additional provision. That provision was that non-irrigation season canal recharge diversions shall be limited to 10,000 acre-feet. If canal recharge diversions exceed 10,000 acre-feet, then the method established for irrigation season canal diversion shall apply. Amended RRCA Rules and Regulations were approved to enact the Accounting Procedures proposed in the non-irrigation season canal diversions for groundwater recharge purposes resolution.

The second resolution approved a long-term agreement related to the operation of Harlan County Lake for Compact Call Years. The RRCA previously enacted temporary resolutions to modify the operations of Harlan County Lake and the Accounting Procedures for the years 2014, 2015, and 2016. The long-term resolution includes 15 provisions, including specifications for the timing and location of Nebraska's compliance activities, creation of additional terms for the accounting, and modification to the application of Nebraska's compliance tests.

The third resolution approved a long-term agreement related to operation and accounting for the Colorado Compact Compliance Pipeline (CCP) and Colorado compliance efforts in the South Fork Republican River Basin. The RRCA approved terms and conditions for CCP operations and the related accounting procedures changes, provided as an appendix to the resolution. For Bonny Reservoir, the agreement was to develop options to maximize the use of the reservoir. Colorado agreed to work with state and federal partners to maintain the flow of water through Bonny Reservoir. The resolution described how Colorado plans to utilize the USDA (Conservation Reserve Enhancement Program (CREP) or other programs to retire up to 25,000 acres in the South Fork Republican River basin by 2027. The resolution also included plans for the States to meet to resolve the Beaver Creek issue for all Water Short Years with unapproved accounting. The resolution concluded with details about how to resolve any disputes between

the states that may arise, procedure for termination of the agreement and reviewing the resolution and progress in 2024.

May 2017 Accounting Procedures Update

At a special meeting of the RRCA on May 25, 2017, the RRCA approved and adopted the revised Accounting Procedures and a resolution specifying that the changes should be used for accounting for 2007 and subsequent years until amended by the RRCA.

The same resolution also clarified that if a state provides a notice of intent to terminate for the August 24, 2016, resolution related to Harlan County Lake for Compact Call Years or the resolution related to operation of Colorado Compact Compliance Pipeline and Colorado's Compliance efforts in the South Fork Republican River Basin, then Nebraska or Colorado, respectively, shall not receive Resolution Water Supply Credit after December 31 of the second full year following the RRCA's receipt of a Notice of Intent to Terminate.

August 2020 Accounting Procedures Update

An update to the Accounting Procedures was made at the August 21, 2020, annual meeting in recognition that the Accounting Procedures do not properly implement the Flood Flow provisions at the Hardy gage with respect to the calculations of the Computed Water Supply above and below Guide Rock, a solution for which had not been obtained prior to the annual meeting. The Engineering Committee's annual report included an attachment documenting the exchanges between the states that had occurred to date towards resolution of the issue. (Reference 2020 annual report when available).

The update to the Accounting Procedures included footnotes to Section III.B.1. – the section describing Flood Flows in the calculation of Computed Water Supply, Section III.H. – the section describing calculations above and below Guide Rock during Water-Short Years, and Attachment 6 - a table outlining the calculations for computing water supplies and consumptive use above Guide Rock. The footnotes reflect the Engineering Committee's findings as described in their annual report.

IV. **Groundwater Model Versions**

Three versions of the RRCA Groundwater Model, officially designated as 12p, 12s and 12s2, have been used by RRCA to compute each state's CBCU and imported water supply credit. The three versions differ in how streams and reservoirs and associated accounting points are represented. The model versions are listed below, starting with the first version designated 12p. That version was replaced by version 12s in 2005 and then by the current version 12s2 in 2010. Follow the provided links for full details on each version of the model.

- 1. Original model version 12p was adopted as the final version for the accounting years 1918-2000; click the link for full details on this original model version. http://www.republicanrivercompact.org/v12p/index.html.
- 2. The next model version 12s, approved January 12, 2005 and used for accounting years 2001-2006, corrected stream routing errors discovered in the 12p version along Medicine Creek above Harry Strunk Reservoir; click the link for full details on this model update for 2005. http://www.republicanrivercompact.org/2003/index.html.
- 3. Currently used (2010) model version 12s2, approved August 12, 2010 and used for accounting years 2007 to present day, involved only changes to accounting point locations for Guide Rock and the North Fork Republican River, and did not involve model changes to how streams and reservoirs are represented; click the link for full details on this current model version.

http://www.republicanrivercompact.org/2007/index.html.

a. Parameter-elevation Regressions on Independent Slopes Model (PRISM) (August 30, 2011) - Missing Precipitation Data for RRCA Groundwater Model 2008-Onward. Beginning in 2008, monthly precipitation data became unavailable for several of the 34 National Weather Service weather stations used in the RRCA groundwater model. For years 2009 and 2019, the RRCA agreed to use monthly PRISM data as a substitute for missing months used to calculate the annual sums. The RRCA approved using this method for missing precipitation data at the RRCA annual meeting on October 16, 2012. The entire PRISM discussion is found as Exhibit A to the Engineering Committee report to RRCA on pages 801-822 in the 52nd annual report.

V. **Accounting Adjustments**

This section provides an overview of accounting provisions impacted by a series of agreements implemented by the states starting in December 2013 and continuing through until the adoption of long-term agreements approved at the 2016 annual meeting, which were incorporated into the August 24, 2016, version of the Accounting Procedures. While the official accounting of the RRCA did not ultimately reflect the accounting provisions contained in the interim agreements, this section outlines those accounting provisions that were impacted through each successive
agreement to provide context to the preliminary accountings that were being developed and reviewed by the states during this timeframe.

- December 2013 At a special telephonic meeting on December 19, 2013, the States approved a resolution for a Temporary Augmentation Plan and Related Accounting Procedures for the Colorado Compact Compliance Pipeline for 2014.
- October 2014 At a special telephonic meeting on October 22, 2014, the States approved a resolution that included adding water to the "Imported Water Supply Credit" and the "Imported Water Supply Credit Above Guide Rock" and reducing the "Virgin Water Supply" of Rock Creek and Medicine Creek for 2014 only. An account was established in Harlan County Lake for use by Kansas during the irrigation season.
- October 2014 At a special telephonic meeting on October 22, 2014, the States approved a resolution for a Temporary Augmentation Plan and Related Accounting Procedures for the Colorado Compact Compliance Pipeline. The plan description and related changes to the accounting procedures and groundwater model were attached as exhibits. There were twenty-three terms and conditions outlined in the resolution.
- November 2014 The next Harlan County Lake agreement was signed at a special telephonic RRCA meeting on November 19, 2014. The States approved a resolution detailing how Nebraska's 2015 compliance operations shall be recorded in the "Imported Water Supply Credit" and the "Imported Water Supply Credit Above Guide Rock" while at the same time reducing the "Virgin Water Supply" of Rock Creek and Medicine Creek by the amount of 2015 augmentation discharges to those creeks. Water delivered to Harlan County Lake and deposited into a Kansas account would be assessed a portion of the monthly evaporation charges based on the amount of water in the account.
- March 2015 On March 6, 2015, at a special telephonic RRCA meeting the States approved an addendum to the November 19, 2014, resolution that provided Nebraska additional flexibility to achieve compact compliance if there is a shortfall as well as detailing adjustments to the compact accounting as a result of compliance actions.
- August 2015 A resolution was approved on August 27, 2015, regarding accounting adjustments and agreements related to the operation of Harlan County Lake for Compact Year 2016. Specifically, the accounting offset for Nebraska's 2016 compliance operations shall be recorded in the "Imported Water Supply Credit" and "Imported Water Supply Credit Above Guide Rock" columns of Nebraska's Take 3 and Table 5c respectively, which, for the 2016 Compact Accounting for Nebraska, will be increased by the amount of augmentation water delivered into the Kansas Account pursuant to Provisions 3 and 5 of the resolution. In 2016 and, as necessary, the 2015 and 2017 Virgin Water Supply of Rock Creek and Medicine Creek will be reduced by the amount of augmentation water supplied between October 1, 2015, and April 1, 2017, in the year pumped.